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Introduction

Solvable models:

• Free fields, integrable models, conformal field theories
• Frustration-free (FF) systems

Affleck-Kennedy–
Lieb–Tasaki model

Toric code ferromagnetic Heisenberg

Today’s topics

Frustration-freeness as a characterization of quantum systems, rather
than an artificial condition for convenience.
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What is frustration?
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Definition of FF systems

Definition 1. Frustration-freeness

A Hamiltonian𝐻 is called frustration-free (FF) if there exists a decom-
position

𝐻 = ∑
𝑖

𝐻𝑖 + const. (1.1)

such that the ground state (GS) minimizes each 𝐻𝑖 simultaneously.
We can assume 𝐻𝑖 ≥ 0 (positive semidefinite). Then frustration-
freeness is equivalent to

𝐻𝑖|GS⟩ = 0, ∀𝑖. (1.2)

However, this definition is meaningless.
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Definition of FF systems

Trivial decomposition: 𝐻 = 𝐻.

→ Restrictions must be imposed on the decomposition of 𝐻.

Definition 2. 𝑘-Locality

We assume each 𝐻𝑖 is 𝑘-local for a finite 𝑘, which means 𝐻𝑖 acts non-
trivially only on connected 𝑘 sites.

2-local 4-local
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Remark

Determining whether a given state is a GS becomes easier in FF cases
(if we already have a nice decomposition).

Examples of FF systems have explicit form of the GS for this reason.

In general, it is computationally hard to determine whether a given
Hamiltonian is FF.

• If the decomposition is specified, it is a QMA1-hard problem.
Bravyi, arXiv:quant-ph/0602108

• There is a polynomial-time algorithm to search a nice decomposition
(with looser restrictions on decomposition than 𝑘-locality.)
Takahashi, Rayudu, Zhou, King, Thompson, Parekh, arXiv:2307.15688
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Remark

Non-trivial FF systems need degeneracy of locally favored states.

Let us consider

𝐻 = 𝐻12 ⊗ 𝟙3 + 𝟙1 ⊗ 𝐻23, (1.3)

where

𝐻12 = 𝟙 − |𝜓12⟩⟨𝜓12|, 𝐻23 = 𝟙 − |𝜓23⟩⟨𝜓23|. (1.4)

If 𝐻 is FF under this decomposition,

|GS⟩ = |𝜓12⟩ ⊗ |𝜙3⟩ = |𝜙1⟩ ⊗ |𝜓23⟩ = |𝜙1⟩ ⊗ |𝜙2⟩ ⊗ |𝜙3⟩. (1.5)

Thus GS must be a trivial tensor product state.

FF-ness is unstable under general perturbations.
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Gapped FF systems vs Gapless FF systems

FF Hamiltonians can approximate general(?) gapped quantum phases.

• Many representative models of gapped phases.

Toric code: Z2 topological order

AKLT model: Haldane phase

• In 1D, gapped GS can be approximated by matrix product states.
Hastings, arXiv:0705.2024

• The GS of a gapped Hamiltonian can be the GS of a quasi-local FF
Hamiltonian. Kitaev, Ann. Phys. 321(1), 2-111 (2006)., Sengoku, Watanabe, arXiv:2505.01010
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Gapped FF systems vs Gapless FF systems

However, gapless FF systems exhibit different low-energy behaviors
than typical gapless systems (as we will see).

FF gapless systems are useless as an approximation of gapless systems.

↔ FF gapless systems are interesting in their own right.

ferromagnetic Heisenberg Rokhsar–Kivelson point critical kinetic Ising
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Dynamical exponents

We focus on dynamical exponents.

Definition 3. Spectral gap

Let us take the ground state energy of 𝐻 to be zero. The spectral gap
gap(𝐻) is the smallest nonzero eigenvalue of 𝐻.

Definition 4. Dynamical exponent

For gapless systems, the dynamical exponent 𝑧 is defined by

gap(𝐻) ∼ 𝐿−𝑧 (2.1)

where 𝐿 is the linear size of the system.

• Typical gapless systems : 𝑧 = 1
• FF gapless systems : 𝑧 ≥ 2
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Dynamical exponents

Critical points with 𝑧 are expected to have invariance under the Lifshitz
scale transformation given by

𝒙 ↦ 𝜆𝒙, 𝑡 ↦ 𝜆𝑧𝑡, (𝜆 > 0). (2.2)

Lifshitz scale invariance of the zero-temp. kinetic Ising model (𝑧 = 2).
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Dynamical exponents

Gapless systems with 𝑧 are expected to have the dispersion relation

𝐸𝑘 ∼ 𝑘𝑧. (2.3)

Conjecture: gapless FF systems have quadratic or softer dispersion.
RM, Soejima, Watanabe, PRB 110, 195140 (2024)

• Coleman’s theorem in the contexts of relativistic field theory:
Spontaneous symmetry breaking (SSB) of continuous symmetries does
not occur in 1+1D systems at 𝑇 = 0.
Coleman, Commun.Math. Phys. 31, 259–264 (1973).

• However, it can occur in 1+1D gapless FF systems because of the
quadratic of softer dispersions. Watanabe, Katsura, Lee, PRL 133, 176001 (2024)
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Case study: XXZ model + magnetic field

gapless FF ⇒ 𝑧 ≥ 2

Let us check 𝑧 ≥ 2 for gapless FF systems in specific examples.

𝐻 = −
𝐿

∑
𝑖=1

(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + Δ𝑍𝑖𝑍𝑖+1) + 2ℎ
𝐿

∑
𝑖=1

𝑍𝑖 + const., (2.4)

FF gapped

FF gapless

Heisenberg

Ferromagnetic

Paramagnetic
gapless

XXZ model with a magnetic field. For example, see the textbook by Franchini (2017).
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Case study: quantum Ising model + cluster interaction

𝐻 = −
𝐿

∑
𝑖=1

(𝜆1𝑍𝑖𝑍𝑖+1 + 𝜆2𝑍𝑖−1𝑋𝑖𝑍𝑖+1) +
𝐿

∑
𝑖=1

𝑋𝑖 + const. (2.5)

FF gapped
FF gapless

from Kumar, Kartik, Rahul, Sarkar, Sci. Rep. 11, 1004 (2021). modified
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FF systems are fine-tuned, but

• They appear at multicritical points in phase diagrams.

• They appear in the contexts of classical stochastic systems via
quantum-classical mapping (as we will see later).
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Previous result and Our result

We show that 𝑧 ≥ 2 for a wide range of FF gapless models.

Relating results (limited to the case of open boundary condition)
Gosset, Mozgunov, J. Math. Phys. 57, 091901 (2016). Anshu, PRB 101, 165104 (2020).

Lemm, Xiang, J. Phys. A: Math. Theor. 55 295203 (2022).
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Gosset–Huang inequality

The techniques needed for the proof:

Theorem 1. Gosset–Huang inequality

Let 𝐻 be an FF Hamiltonian and

• 𝐺 : Projector onto the ground space,
• O𝒙,O′

𝒚 : Local operators

Then

|⟨GS|O𝒙(𝟙 − 𝐺)O′
𝒚|GS⟩|

‖O†
𝒙|GS⟩‖‖O′

𝒚|GS⟩‖
≤ 2 exp (−𝐶|𝒙 − 𝒚|√gap(𝐻) ) , (2.6)

where 𝐶 is a positive constant.

(Gosset and Huang were aware of the application to the gapless FF systems,
but they did not demonstrate the scope of its applicability.)
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𝑧 ≥ 2 from Gosset–Huang inequality

Theorem 2. RM, Soejima, Watanabe PRX 15, 041050 (2025).

FF systems with power-law ground-state correlations satisfy 𝑧 ≥ 2.

Proof: Let us assume the system has algebraic correlation functions:

|⟨GS|O𝒙(𝟙 − 𝐺)O′
𝒚|GS⟩| ≳ 1

|𝒙 − 𝒚|Δ
, (Δ > 0) (2.7)

From the Gosset–Huang inequality,

1
𝐿Δ ≲

|⟨GS|O𝒙(𝟙 − 𝐺)O′
𝒚|GS⟩|

‖O†
𝒙|GS⟩‖‖O′

𝒚|GS⟩‖
≤ 2 exp (−𝐶𝐿√gap(𝐻) ) . (2.8)

This inequality breaks for sufficiently large 𝐿 if 𝑧 < 2. �
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𝑧 ≥ 2 from Gosset–Huang inequality

c.f. Hastings’ inequality for general quantum systems
Hastings, PRL 93, 140402 (2004).

|⟨GS|O𝒙(𝟙 − 𝐺)O′
𝒚|GS⟩|

‖O†
𝒙|GS⟩‖‖O′

𝒚|GS⟩‖
≤ 𝐶′ × exp (−𝐶″|𝒙 − 𝒚|gap(𝐻)) . (2.9)

The derivation relies on the Lieb-Robinson bound.

This gives a weaker bound 𝑧 ≥ 1 for general quantum systems with algebraic
correlation functions.
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𝑧 ≥ 2 from Gosset–Huang inequality

Our argument is highly general because we do not assume

• boundary condition

• spatial dimension

• structure of the lattice

• translational invariance

Also, our result can be extended to fermionic FF systems.

(Of course, we should explicitly construct an algebraic correlation function.)
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Our result: 𝑧 ≥ 2 for dynamic critical phenomena

Surprisingly, our framework is also applicable to classical Markov processes,
leaving the contexts of quantum systems.

We prove the same bound 𝑧 ≥ 2 for dynamic critical phenomena assuming
locality and detailed balance.

Critical points 𝑧 (numerical) References
Ising (2D) 2.1667(5) ≥ 2 Nightingale, Blöte, PRB 62, 1089 (2000).

Ising (3D) 2.0245(15) ≥ 2 Hasenbusch, PRE 101, 022126 (2020).

Heisenberg (3D) 2.033(5) ≥ 2 Astillero, Ruiz-Lorenzo, PRE 100, 062117 (2019).

three-state Potts (2D) 2.193(5) ≥ 2 Murase, Ito, JPSJ 77, 014002 (2008).

four-state Potts (2D) 2.296(5) ≥ 2 Phys. A: Stat. Mech. Appl. 388, 4379 (2009).

Dynamical exponents of Markov processes relaxing to critical equilibrium states.
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Application to Markov processes

We focus on a specific class of FF Hamiltonians.

Definition 5. (Generalized) Rokhsar–Kivelson Hamiltonian

𝐻RK = ∑𝑖 𝐻RK
𝑖 is a (generalized) RK Hamiltonian if

1. Hamiltonian is FF

2. GS is written as

|ΨRK⟩ = ∑
C

√𝑤(C)
Z

|C⟩, Z = ∑
C

𝑤(C), (2.10)

where 𝑤(C) is a Boltzmann weight of a classical statistical
system.

3. The off-diagonal elements of 𝐻𝑖 are non-positive

There are several names for this class: stoquastic FF Hamiltonian, stochastic
matrix form, stochastic quantization.
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Application to Markov processes

RK Hamiltonians correspond to Markov processes with local state updates
and the detailed balance condition.

Henley, J. Phys.: Condens. Matter 16 S891 (2004).

Castelnovo et al., Ann. Phys. 318, 316 (2005).

RK Hamiltonian Markov process

Ground state

dim.

dim.

Canonical

distribution 

correspondence

Correspondence between RK Hamiltonians and Markov processes.
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Application to Markov processes

The correspondence is explicitly given by

(𝑊𝑖)CC′ ≔ −√𝑤(C) (𝐻RK
𝑖 )CC′

1
√𝑤(C′)

. (2.11)

𝑊 ≔ ∑𝑖 𝑊𝑖 is the transition-rate for the corresponding Markov process.

Correspondense between RK Hamiltonians and Markov processes

Imaginary-time Schrödinger eq. Master eq.
d|𝜓(𝑡)⟩/d𝑡 = −𝐻RK|𝜓(𝑡)⟩ d𝑝(𝑡)/d𝑡 = 𝑊𝑝(𝑡)
Ground state Steady state
|ΨRK⟩ = ∑C

√𝑤(C)/Z |C⟩ 𝑝eq(C) = 𝑤(C)/Z
Symmetricity Detailed balance condition
(𝐻RK

𝑖 )CC′ = (𝐻RK
𝑖 )CC′ (𝑊𝑖)CC′𝑤(C′) = (𝑊𝑖)C′C𝑤(C)

FF-ness Probability conservation
⟨ΨRK|𝐻RK

𝑖 = 0 ∑C(𝑊𝑖)CC′ = 0
Dynamical exponent Dynamical exponent
gap(𝐻RK) ∼ 𝐿−𝑧 𝜏 ≔ 1/ gap(−𝑊) ∼ 𝐿𝑧
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Example: 2+1D kinetic Ising model

■ 2+1D kinetic Ising model (heat bath, Gibbs sampling)

Boltzmann weight:

𝑤(C) = exp (𝛽 ∑
⟨𝑖,𝑗⟩

𝜎𝑖𝜎𝑗) (𝜎𝑖 = ±1). (2.12)

The heat bath (Gibbs sampling) algorithm is given by

(𝑊𝑖)C′C = −(𝑊𝑖)CC = 𝑤(C′)
𝑤(C) + 𝑤(C′)

, (2.13)

where |C′⟩ ≔ 𝜎𝑥
𝑖 |C⟩. We do not assume any conserved quantity (model A).

The corresponding RK Hamiltonian is

𝐻RK
𝑖 = 1

2 cosh(𝛽 ∑𝑗∼𝑖 𝑍𝑗)
(e−𝛽𝑍𝑖 ∑𝑗∼𝑖 𝑍𝑗 − 𝑋𝑖) . (2.14)
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Example: 2+1D kinetic Ising model

At 𝛽 = 𝛽𝑐 ≈ 0.44, the relaxation time diverges as 𝐿 → ∞. (𝑧 ≈ 2.17)

Markov Chain Monte Carlo simulation for 2+1D kinetic Ising model
28



Dynamical exponents for various critical points

Critical points 𝑧 (numerical) References
Ising (2D) 2.1667(5) ≥ 2 Nightingale, Blöte, PRB 62, 1089 (2000).

Ising (3D) 2.0245(15) ≥ 2 Hasenbusch, PRE 101, 022126 (2020).

Heisenberg (3D) 2.033(5) ≥ 2 Astillero, Ruiz-Lorenzo, PRE 100, 062117 (2019).

three-state Potts (2D) 2.193(5) ≥ 2 Murase, Ito, JPSJ 77, 014002 (2008).

four-state Potts (2D) 2.296(5) ≥ 2 Phys. A: Stat. Mech. Appl. 388, 4379 (2009).

Dynamical exponents of RK Hamiltonians of critical points

RK Hamiltonians of critical points seemed to satisfy 𝑧 ≥ 2.

• Conjectured in Isakov, Fendley, Ludwig, Trebst, Troyer, PRB 83, 125114 (2011).

• Previous rigorous result: 𝑧 ≥ 2 − 𝜂. Halperin, PRB 8, 4437 (1973).
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𝑧 ≥ 2 for conformal quantum critical points

Theorem 3. RM, Soejima, Watanabe PRX 15, 041050 (2025).

RK Hamiltonians of critical points satisfy 𝑧 ≥ 2.

Our framework: If there is a correlation function such that

|𝒙 − 𝒚| ∼ 𝐿,
|⟨Ψ|O𝒙(𝟙 − 𝐺)O′

𝒚|Ψ⟩|
‖O†

𝒙|Ψ⟩‖‖O′
𝒚|Ψ⟩‖

≳ 1
𝐿Δ , (2.15)

then 𝑧 ≥ 2. The existence of such a correlation function is quite natural for
critical points.

Rigorous discussion (in mathematical sense) for the Ising model is given in
RM, Soejima, Watanabe, J Stat Phys 192, 76 (2025).
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No-go theorem for local MCMC methods with detailed balance

Rephrasing the theorem in the language of Markov processes, we obtain the
following no-go theorem.

No-go theorem

Markov processes for critical points with local state updates and the
detailed balance condition satisfy 𝑧 ≥ 2.

→ First proof of an empirical fact known in the contexts of dynamic critical
phenomena.
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Stochastic dynamics with 𝑧 < 2

By violating the assumptions in the no-go theorem, one can create Markov
processes with faster relaxation with 𝑧 < 2.

■ Wolff cluster algorithm Wolff, PRL. 62, 361 (1988).

Locality: ×, Detailed balance condition: ✓

State update of the Wolff cluster algorithm

𝑧 ≈ 0.3 for the 2D Ising critical point. Liu et al. PRB 89, 054307 (2014).
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Stochastic dynamics with 𝑧 < 2

■ Asymmetric simple exclusion process (ASEP)

Locality: ✓, Detailed balance condition: ×

XXZ model with a non-Hermitian term:

𝐻𝑖 = 1
4

(1 − Δ𝑍𝑖𝑍𝑖+1) − 1 + 𝑠
2

𝜎+
𝑖 𝜎−

𝑖+1 − 1 − 𝑠
2

𝜎−
𝑖 𝜎+

𝑖+1 + 𝑠
2

(𝑍𝑖 − 𝑍𝑖+1) (2.16)

Δ < 1: Gapless phase (𝑧 = 1)
Δ > 1: Gapped phase
Δ = 1: Stochastic line

• 𝑠 = 0: Heisenberg (𝑧 = 2, EW class)

• 𝑠 > 0: ASEP (𝑧 = 3/2, KPZ class)
Kim, PRE 52, 3512 (1995).

Gwa, Spohn, PRA 46, 844 (1992).

Heisenberg
XXZ

ASEP

Gapless

CFT

Gapped

Phase diagram of XXZ model with
a non-Hermitian term.
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This section is based on arXiv:2503.14312 (2025)., arXiv:2503.12879 (2025).

• We established a necessary and sufficient condition for
frustration-freeness in free-fermion systems.

• In free-fermion systems, it is clear that why frustration-freeness implies
quadratic or softer band dispersions.
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Settings

𝐻̂ = ∑
𝑹∈Λ

𝐻̂𝑹, (3.1)

𝐻̂𝑹 = ̂𝒄†
𝑹𝐻𝑹 ̂𝒄𝑹 + const

= ∑
𝜹,𝜹′,𝜎,𝜎′

̂𝑐†
𝑹+𝜹𝜎(𝐻𝑹)𝑹+𝜹𝜎,𝑹+𝜹′𝜎′ ̂𝑐𝑹+𝜹′𝜎′ + cosnt. (3.2)

The constant is chosen so that the GS energy of 𝐻̂𝑹 is zero. We assumed
U(1) symmetry for simplicity. For more general Hamiltonians including BdG
form, see arXiv:2503.12879.

Let us decompose 𝐻𝑹 into the positive and negative parts as

𝐻𝑹 = 𝐻(+)
𝑹 + 𝐻(−)

𝑹 (𝐻(+)
𝑹 ≥ 0, 𝐻(−)

𝑹 ≤ 0)

=
𝐴𝑹

∑
𝛼=1

𝜇𝑹𝛼𝝍𝑹𝛼𝝍†
𝑹𝛼 −

𝐵𝑹

∑
𝛽=1

𝜈𝑹𝛽𝝓𝑹𝛽𝝓†
𝑹𝛽, (3.3)

where 𝜇𝑹𝛼 > 0 and −𝜈𝑹𝛽 < 0 are nonzero eigenvalues of 𝐻𝑹. 𝝍𝑹𝛼 and 𝝓𝑹𝛽
are corresponding orthonormal eigenvectors.
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Settings

We define annihilation operators of local orbitals by

̂𝜓𝑹𝛼 ≔ 𝝍†
𝑹𝛼 ̂𝒄𝑹, (3.4)

̂𝜙𝑹𝛽 ≔ 𝝓†
𝑹𝛽 ̂𝒄𝑹. (3.5)

NOTE: These are not the annihilation operators of eigenmodes of the total
Hamiltonian!

Thus, general local terms are rewritten as

𝐻̂𝑹 = 𝐻̂(+)
𝑹 + 𝐻̂(−)

𝑹

=
𝐴𝑹

∑
𝛼=1

𝜇𝑹𝛼
̂𝜓†
𝑹𝛼

̂𝜓𝑹𝛼 +
𝐵𝑹

∑
𝛽=1

𝜈𝑹𝛽
̂𝜙𝑹𝛽

̂𝜙†
𝑹𝛽. (3.6)

FF condition

̂𝜓𝑹𝛼|GS⟩ = ̂𝜙†
𝑹𝛽|GS⟩ = 0, ∀𝛼, 𝛽. (3.7)
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Frustration-free conditions in real space

FF condition

̂𝜓𝑹𝛼|GS⟩ = ̂𝜙†
𝑹𝛽|GS⟩ = 0, ∀𝛼, 𝛽. (3.8)

Necessary and sufficient condition for frustration-freeness

{ ̂𝜓𝑹𝛼, ̂𝜙†
𝑹′𝛽} = 0 ∀𝑹, 𝑹′, 𝛼, 𝛽. (3.9)

The necessity can be seen by applying { ̂𝜓𝑹𝛼, ̂𝜙†
𝑹′𝛽} ∈ ℂ to GS:

̂𝜓𝑹𝛼
̂𝜙†
𝑹′𝛽|GS⟩ + ̂𝜙†

𝑹′𝛽
̂𝜓𝑹𝛼|GS⟩ = 0. (3.10)

The sufficiency is shown by explicit construction of GS as

|GS⟩ ∝ ∏
𝑹,𝛽

̂𝜙†
𝑹𝛽|0⟩, (3.11)

where |0⟩ is the Fock vacuum. If { ̂𝜙𝑹𝛽} are linearly dependent, one can
choose a linearly independent subset to construct GS.
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Example: ladder model

𝐻̂ = ∑
𝑖

̂𝜓†
𝑖

̂𝜓𝑖 + ∑
𝑖

̂𝜙𝑖
̂𝜙†
𝑖 , (3.12)

̂𝜓𝑖 =
̂𝑎𝑖 − ̂𝑏𝑖 − ̂𝑎𝑖+1 + 𝑏̂𝑖+1

2
, ̂𝜙𝑖 =

̂𝑎𝑖 + 𝑏̂𝑖 + ̂𝑎𝑖+1 + ̂𝑏𝑖+1
2

. (3.13)

This model satisfies the FF condition:

{ ̂𝜓𝑖, ̂𝜙†
𝑗} = 0, ∀𝑖, 𝑗. (3.14)
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Example: checkerboard lattice

This model hosts spatial conformal invariance arXiv:2511.16496.
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An important consequence

An important consequence of the frustration-freeness is that 𝐻̂(+)
𝑹 and 𝐻̂(−)

𝑹′

commute:

[𝐻̂(+)
𝑹 , 𝐻̂(−)

𝑹′ ] =
𝐴𝑹

∑
𝛼=1

𝐵𝑹

∑
𝛽=1

𝜇𝑹𝛼𝜈𝑹𝛽

× ( ̂𝜙†
𝑹′𝛽{ ̂𝜙𝑹′𝛽, ̂𝜓†

𝑹𝛼} ̂𝜓𝑹𝛼 − ̂𝜓†
𝑹𝛼{ ̂𝜓𝑹𝛼, ̂𝜙†

𝑹′𝛽} ̂𝜙𝑹′𝛽) = 0. (3.15)

This relation implies that the positive and negative parts 𝐻̂(±) ≔ ∑𝑹 𝐻̂(±)
𝑹

independently give positive and negative modes in the energy spectrum.

Reminder:

𝐻̂𝑹 = 𝐻̂(+)
𝑹 + 𝐻̂(−)

𝑹

=
𝐴𝑹

∑
𝛼=1

𝜇𝑹𝛼
̂𝜓†
𝑹𝛼

̂𝜓𝑹𝛼 +
𝐵𝑹

∑
𝛽=1

𝜈𝑹𝛽
̂𝜙𝑹𝛽

̂𝜙†
𝑹𝛽.

{ ̂𝜓𝑹𝛼, ̂𝜙†
𝑹′𝛽} = 0 ∀𝑹, 𝑹′, 𝛼, 𝛽.
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Translation invariant models

Let us consider translation-invariant cases. Assumption:

𝐻̂𝑹+𝑹′ = ̂𝑇𝑹′𝐻̂𝑹 ̂𝑇 †
𝑹′ , (3.16)

where ̂𝑇𝑹 is the translation operator. If this is not satisfied, we can always
symmetrize the local terms as

𝐻̂′
𝑹 ≔ 1

𝑉
∑
𝑹′

̂𝑇𝑹′𝐻̂𝑹−𝑹′ ̂𝑇 †
𝑹′ , (3.17)

where 𝑉 is the number of unit cells. (You can easily check that the
symmetrized decomposition still satisfies the FF condition.)

Then, we can omit the subscript 𝑹 in 𝐻𝑹:

𝐻𝑹 =
𝐴

∑
𝛼=1

𝜇𝛼𝝍𝛼𝝍†
𝛼 −

𝐵
∑
𝛽=1

𝜈𝛽𝝓𝛽𝝓†
𝛽. (3.18)

𝐻̂𝑹 = ∑
𝜹,𝜹′,𝜎,𝜎′

̂𝑐†
𝑹+𝜹𝜎(𝐻𝑹)𝜹′𝜎,𝜹′𝜎′ ̂𝑐𝑹+𝜹″𝜎′ + const. (3.19)
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Translation invariant models

Introducing the Fourier transformation by ̂𝑐†
𝑹𝜎 = ∑𝒌

1√
𝑉 𝑒−𝑖𝒌⋅𝑹 ̂𝑐†

𝒌𝜎, we have

∑
𝑹

𝐻̂𝑹 = ∑
𝒌

̂𝒄†
𝒌𝐻𝒌 ̂𝒄𝒌 + const, (3.20)

∑
𝑹

𝐻̂(+)
𝑹 = ∑

𝒌
̂𝒄†
𝒌𝐻(+)

𝒌 ̂𝒄𝒌, (3.21)

∑
𝑹

𝐻̂(−)
𝑹 = ∑

𝒌
̂𝒄†
𝒌𝐻(−)

𝒌 ̂𝒄𝒌 + const. (3.22)

Then, 𝐻(+)
𝒌 and 𝐻(−)

𝒌 give the positive and negative parts of 𝐻𝒌. These are
explicitly given by

𝐻(+)
𝒌 = ∑

𝛼
𝜇𝛼𝝍𝛼(𝒌)𝝍𝛼(𝒌)†, 𝐻(−)

𝒌 = − ∑
𝛽

𝜈𝛽𝝓𝛽(𝒌)𝝓𝛽(𝒌)†, (3.23)

where 𝝍𝛼 and 𝝓𝛽 are finite-degree vector polynomials in 𝑒𝑖𝒌⋅𝒂𝑗 defined by

(𝝍𝛼(𝒌))𝜎 = ∑
𝜹

𝑒𝑖𝒌⋅𝜹(𝝍𝛼)𝜹𝜎, (𝝓𝛽(𝒌))𝜎 = ∑
𝜹

𝑒𝑖𝒌⋅𝜹(𝝓𝛽)𝜹𝜎, (3.24)

where 𝒂𝑗 (𝑗 = 1, … , 𝑑) are primitive lattice vectors.
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Frustration-free conditions in momentum space

𝐻(+)
𝒌 = ∑

𝛼
𝜇𝛼𝝍𝛼(𝒌)𝝍𝛼(𝒌)†, 𝐻(−)

𝒌 = − ∑
𝛽

𝜈𝛽𝝓𝛽(𝒌)𝝓𝛽(𝒌)†.

Since 𝐻±
𝒌 are Laurent polynomials in 𝑒𝑖𝒌⋅𝒂𝑗 (polynomials in 𝑒±𝑖𝒌⋅𝒂𝑗) , both

𝐻(+)
𝒌 and 𝐻(−)

𝒌 form local tight-binding models!

(In general, the positive/negative parts of a given tight-binding Hamiltonian
are nonlocal.)

Furthermore, if both 𝐻(+)
𝒌 and 𝐻(−)

𝒌 are nonzero, they must possess flat
bands at zero energy. 43



Frustration-free conditions in momentum space

Now, it is clear why dispersion relations are quadratic or softer in gapless
frustration-free free fermions.

✘

Gapless mode only appears when the positive or negative parts touch at
zero energy. This touching point is quadratic or softer due to the analyticity
of 𝐻(±)

𝒌 .
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Frustration-free conditions in momentum space

Necessary condition for frustration-freeness

𝐻(±)
𝒌 are Laurent polynomials in 𝑒𝑖𝒌⋅𝒂𝑗 where 𝒂𝑗 are primitive lattice

vectors.

Is this also sufficient?

Frustration-freeness in momentum space

𝐻(+)
𝒌 = ∑

𝛼
𝜇𝛼𝝍𝛼(𝒌)𝝍𝛼(𝒌)†, 𝐻(−)

𝒌 = − ∑
𝛽

𝜈𝛽𝝓𝛽(𝒌)𝝓𝛽(𝒌)†.

(You can reconstruct 𝝍𝑹𝛼 and 𝝓𝑹𝛽 in real space from 𝝍𝛼(𝒌) and 𝝓𝛽(𝒌).)
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Frustration-free conditions in momentum space

𝐻(+)
𝒌 = ∑

𝛼
[√𝜇𝛼𝝍𝛼(𝒌)][√𝜇𝛼𝝍𝛼(𝒌)]†, 𝐻(−)

𝒌 = − ∑
𝛽

[√𝜈𝛽𝝓𝛽(𝒌)][√𝜈𝛽𝝓𝛽(𝒌)]†.

Question: Any operator-valued positive/negative semidefinite Laurent
polynomials are decomposed as above?

Let us denote 𝑒𝑖𝒌⋅𝒂𝑗 as 𝑧𝑗.

Practice problem:

𝐻(+)
𝒌 = 4 + 𝑧1 + 𝑧∗

1 + 𝑧1𝑧∗
2 + 𝑧∗

1𝑧2. (3.25)

Answer:
√𝜇1𝜓1 = 𝑧1 + 1, √𝜇2𝜓2 = 𝑧1 + 𝑧2. (3.26)

|𝑧1 + 1|2 + |𝑧1 + 𝑧2|2 = 4 + 𝑧1 + 𝑧∗
1 + 𝑧1𝑧∗

2 + 𝑧∗
1𝑧2. (3.27)
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Frustration-free conditions in momentum space

Question: Any operator-valued positive/negative semidefinite Laurent
polynomials are represented as sum of squares?

• Yes, in 1D Rosenblum, J. Math. Anal. Appl., 23, 1 (1963).

• Yes, in 2D Dritschel, Math. Ann. 391, 515–537 (2025).

• No, in 3D or higher Trans. Amer. Math. Soc. 352 (2000).

Necessary and sufficient condition in 1D and 2D

Free fermion Hamiltonian 𝐻̂ = ∑𝒌 ̂𝒄†
𝒌𝐻𝒌 ̂𝒄𝒌 is frustration-free if and

only if positive/negative parts 𝐻(±)
𝒌 of 𝐻𝒌 are Laurent polynomials in

𝑒𝑖𝒌⋅𝒂𝑗 where 𝒂𝑗 are primitive lattice vectors.

Decomposition independent criterion!
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Frustration-free conditions in momentum space

Necessary and sufficient condition in 3D and higher

Free fermion Hamiltonian 𝐻̂ = ∑𝒌 ̂𝒄†
𝒌𝐻𝒌 ̂𝒄𝒌 is frustration-free if and

only if positive/negative parts 𝐻(±)
𝒌 of 𝐻𝒌 are Laurent polynomials in

𝑒𝑖𝒌⋅𝒂𝑗 where 𝒂𝑗 are primitive lattice vectors, and they admit sum of
squares decompositions as

𝐻(+)
𝒌 = ∑

𝛼
𝜇𝛼𝝍𝛼(𝒌)𝝍𝛼(𝒌)†, 𝐻(−)

𝒌 = − ∑
𝛽

𝜈𝛽𝝓𝛽(𝒌)𝝓𝛽(𝒌)†.

(This needs some computational power to check.)
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1. Introduction

2. Rigorous lower bound on dynamical exponents

3. Frustration-free free fermions

4. 𝑐 = −2 conformal field theory in quadratic band touching



Quadratic band touching

Quadratic band touching (QBT) in fermion systems provides a distinct
low-energy universality class from linear Dirac points.

Quadratic band touching Dirac cone

non-relativistic ↔ relativistic
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Quadratic band touching

QBT has attracted attention because it is marginally unstable against
interactions Sun et al. (2009)., unlike Dirac points.

This instability turns QBT into a platform for studying interaction-driven
phases, such as

• nematic order

• quantum anomalous Hall state

• quantum spin Hall state

However, it is important to fully understand non-interacting QBT sys-
tems before considering interactions.
I refocus attention on non-interacting QBT as a quantum critical point.
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Continuum model

I consider a (𝑑 + 1)-dimensional continuum model of 𝑑-component fermions
with QBT.

1-form fermions:

̂𝜓(𝒙) = ̂𝜓𝑖(𝒙)𝑑𝑥𝑖, ̂𝜓†(𝒙) = ̂𝜓†
𝑖 (𝒙)𝑑𝑥𝑖, (4.1)

The Hamiltonian of the continuum model is given as

𝐻̂ = 𝑡+(𝑑 ̂𝜓†, 𝑑 ̂𝜓) + 𝑡−(𝛿 ̂𝜓, 𝛿 ̂𝜓†)

= ∫(𝑡+𝑑 ̂𝜓†(𝒙) ∧ ⋆𝑑𝜓(𝒙) + 𝑡−𝛿 ̂𝜓(𝒙) ∧ ⋆𝛿 ̂𝜓†(𝒙)), (4.2)

where 𝑡± are positive constants.
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Continuum model

I will mainly focus on the two-dimensional case 𝑑 = 2 in this talk. In two
dimensions, the explicit forms of 𝑑 ̂𝜓 and 𝛿 ̂𝜓 are given as

𝑑 ̂𝜓(𝒙) = (𝜕1
̂𝜓2(𝒙) − 𝜕2

̂𝜓1(𝒙))𝑑𝑥1 ∧ 𝑑𝑥2, (4.3)

𝛿 ̂𝜓(𝒙) = −𝜕1
̂𝜓1(𝒙) − 𝜕2

̂𝜓2(𝒙), (4.4)

and the same applies for ̂𝜓†. The Hamiltonian is expressed as

𝐻̂ = ∫ d2𝒙 ( ̂𝜓†
1(𝒙) ̂𝜓†

2(𝒙)) 𝐻(∇) (
̂𝜓1(𝒙)
̂𝜓2(𝒙)

) , (4.5)

𝐻(∇) = ( −𝑡+𝜕2
2 + 𝑡−𝜕2

1 −(𝑡+ + 𝑡−)𝜕1𝜕2
−(𝑡+ + 𝑡−)𝜕2𝜕1 −𝑡+𝜕2

1 + 𝑡−𝜕2
2

) . (4.6)

52



Continuum model

In momentum space, the Hamiltonian is expressed as

𝐻̂ = ∫ d2𝒌
(2𝜋)2 ( ̂𝜓†

1,𝒌
̂𝜓†
2,𝒌) 𝐻(𝒌) (

̂𝜓1,𝒌
̂𝜓2,𝒌

) , (4.7)

𝐻(𝒌) = ( 𝑡+𝑘2
2 − 𝑡−𝑘2

1 (𝑡+ + 𝑡−)𝑘1𝑘2
(𝑡+ + 𝑡−)𝑘2𝑘1 𝑡+𝑘2

1 − 𝑡−𝑘2
2

)

=
𝑡+ − 𝑡−

2
(𝑘2

1 + 𝑘2
2)𝜎0 −

𝑡+ + 𝑡−
2

(𝑘2
1 − 𝑘2

2)𝜎𝑧

+ (𝑡+ + 𝑡−)𝑘1𝑘2𝜎𝑥. (4.8)

When 𝑑 = 2, this gives a general effective Hamiltonian of rotationally
symmetric two-bands system exhibiting QBT (up to unitary transformations).
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Continuum model

By diagonalizing this Hamiltonian, the energy dispersions ϵ± and the Bloch
states 𝑏± are given as

ϵ+(𝒌) = 𝑡+|𝒌|2, 𝑏⃗+(𝒌) = 𝒌⊥

|𝒌|
, (4.9)

ϵ−(𝒌) = −𝑡−|𝒌|2, 𝑏⃗−(𝒌) = 𝒌
|𝒌|

, (4.10)

where 𝒌⊥ = (−𝑘2, 𝑘1). The two bands touch quadratically at 𝒌 = 𝟎.

The ground state with all negative-energy states occupied is expressed as

|GS⟩ = 1√
𝑍

∏
𝒌≠𝟎

i𝑔𝑘𝑗 ̂𝜓†
𝑗,𝒌|0⟩, (4.11)

where 𝑍 = ∏𝒌≠𝟎(𝑔2|𝒌|2) and 𝑔 = 1/
√

4𝜋 . These factors are introduced for
later convenience.
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Lattice model

Figure 1: square lattice ↔ checkerboard lattice

I assign fermions to all edges of the lattice and denote their creation and
annihilation operators as ̂𝜓†(𝑒) and ̂𝜓(𝑒), respectively. These satisfy

{ ̂𝜓(𝑒), ̂𝜓†(𝑒′)} = 𝛿𝑒,𝑒′ . (4.12)
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Lattice model

Continuum QBT model:

𝐻̂ = ∫ 𝑑𝑑𝑥 (𝑡+𝑑 ̂𝜓†(𝒙) ∧ ⋆𝑑 ̂𝜓(𝒙) + 𝑡−𝛿 ̂𝜓(𝒙) ∧ ⋆𝛿 ̂𝜓†(𝒙)). (4.13)

Lattice QBT model:

𝐻̂ = 𝑡+ ∑
𝑣∈𝑉

𝑑 ̂𝜓†(𝑣)𝑑 ̂𝜓(𝑣) + 𝑡− ∑
𝑓∈𝐹

𝛿 ̂𝜓(𝑓)𝛿 ̂𝜓†(𝑓). (4.14)

𝑉 : set of vertices, 𝐹 : set of faces.
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Lattice model
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Lattice model

An important property of this model (for both lattice and continuum) is
frustration-freeness, which means the ground state minimizes each term of
the Hamiltonian simultaneously.

In the present model, this means

𝑑 ̂𝜓†(𝑣)𝑑 ̂𝜓(𝑣)|GS⟩ = 0, ∀𝑣 ∈ 𝑉 , (4.15)

𝛿 ̂𝜓(𝑓)𝛿 ̂𝜓†(𝑓)|GS⟩ = 0, ∀𝑓 ∈ 𝐹. (4.16)

Another expression:

𝑑 ̂𝜓(𝑣)|GS⟩ = 0, ∀𝑣 ∈ 𝑉 , (4.17)

𝛿 ̂𝜓†(𝑓)|GS⟩ = 0, ∀𝑓 ∈ 𝐹. (4.18)
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What is missing?

• One-particle energy dispersions and Bloch states are easy, but still
many-body ground-states have room for non-trivial physics.

• I discover that the ground states of QBT systems exhibit spatial
conformal invariance.
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Conformal symmetry

Conformal transformations:

𝑥𝜇 ↦ 𝑥′𝜇, 𝑔𝜇𝜈(𝑥) ↦ Ω(𝑥)𝑔𝜇𝜈(𝑥) (4.19)

Locally, it looks like a scale transformation.

Figure 2: An example of conformal transformation. Angles are preserved, but lengths
are not.
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Conformal quantum critical points (CQCP)

Two distinct classes of quantum critical points with conformal symmetry:

Conformal field theories (as quantum critical points)

• 𝑑 + 1-dim. systems with 𝑑 + 1-dim. conformal symmetry

• Widely observed.

Conformal quantum critical points (CQCP)

• 𝑑 + 1-dim. system

• Non-relativistic ⇒ No 𝑑 + 1-dim. conformal symmetry

• Ground states exhibits 𝑑-dim. spatial conformal symmetry

• Less common and fine-tuned. Often appear as multicritical points.
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Conformal quantum critical points (CQCP)

Spatial conformal symmetry in CQCPs is formulated via the
quantum-classical correspondence:

⟨GS|𝑂̂(𝑡 = 0)|GS⟩CQCP𝑑+1
= ⟨𝑂⟩CFT𝑑

(4.20)
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Rough explanation of spatial conformal symmetry from frustration-freeness

Lifshitz scale invariance at nonrelativistic quantum critical points:

𝑧𝑇 0
0 + 𝑇 𝑖

𝑖 = 𝜕𝜇𝑉 𝜇, (4.21)

where 𝑇 𝜇
𝜈 is the energy-momentum tensor. We also assume

𝑧𝑇 0
0 + 𝑇 𝑖

𝑖 = 0 (4.22)

after improving 𝑇 𝜇
𝜈. Frustration-freeness implies that

𝑇 0
0 |GS⟩ = 0 ⇒ 𝑇 𝑖

𝑖 |GS⟩ = 0. (4.23)

Thus,

⟨GS|𝑇 𝑖
𝑖 |GS⟩ = 0 (4.24)

which implies spatial conformal invariance.
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Correspondence to symplectic fermion

|GS⟩ = 1√
𝑍

∏
𝒌≠𝟎

i𝑔𝑘𝑗 ̂𝜓†
𝑗,𝒌|0⟩, (4.25)

where 𝑍 = ∏𝒌≠𝟎(𝑔2|𝒌|2) and 𝑔 = 1/
√

4𝜋 .

Let us represent this ground state using a fermionic path integral. For each
non-zero mode, I insert the identity

𝑥 = ∫ exp(𝑥𝜃𝒌)d⃗𝜃𝒌. (4.26)

Here, I use right integration d⃗𝜃𝒌 ≔ 𝜕⃗/𝜕𝜃𝒌 to avoid later sign complications.
Then, the ground state is expressed as

|GS⟩ = 1√
𝑍

∏
𝒌≠𝟎

[∫ exp (i𝑔𝑘𝑗 ̂𝜓†
𝑗,𝒌𝜃𝒌) d⃗𝜃𝒌] |0⟩

= 1√
𝑍

∫ 𝜃𝒌=𝟎 exp (−𝑔 ∫ d2𝒌
(2𝜋)2 i𝑘𝑗𝜃𝒌

̂𝜓†
𝑗,𝒌) |0⟩D⃗𝜃

= 1√
𝑍

∫ 𝜃𝒌=𝟎 exp (−𝑔 ∫ d2𝒙 𝜕𝑗𝜃(𝒙) ̂𝜓†
𝑗(𝒙)) |0⟩D⃗𝜃. (4.27)
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Correspondence to symplectic fermion

Thus, the ground state can be represented as

|𝜉⟩ ≔ 1√
𝑍

∫ 𝜉|𝑔𝑑𝜃⟩D⃗𝜃, (4.28)

where 𝜉 ≔ 𝜃𝒌=𝟎 is the zero mode and |𝑔𝑑𝜃⟩ is a fermionic coherent state
given by

|𝑔𝑑𝜃⟩ ≔ exp (−𝑔 ∫ d𝑑𝒙 𝜕𝑗𝜃(𝒙) ̂𝜓†
𝑗(𝒙)) |0⟩. (4.29)

This coherent state satisfies

̂𝜓𝑖(𝒙)|𝑔𝑑𝜃⟩ = 𝑔𝜕𝑖𝜃(𝒙)|𝑔𝑑𝜃⟩ = 𝜕𝑖𝜃(𝒙)√
4𝜋

|𝑔𝑑𝜃⟩ (4.30)

Other degenerate ground states can be constructed by acting the zero-mode
creation operators ̂𝜓†

𝑖,𝒌=0 on |GS⟩.
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Correspondence to symplectic fermion

The bra of the ground state in Eq. (4.28) is given as

⟨𝜉∗| = 1√
𝑍

∫D𝜃∗⟨𝑔𝑑𝜃∗|𝜉∗. (4.31)

Here, 𝜃∗ are not the complex conjugates of 𝜃, but independent fields. Then,
the norm of the ground state is

⟨𝜉∗|𝜉⟩ = 1
𝑍

∫D𝜃∗⟨𝑑𝜃∗|𝜉∗ ∫ 𝜉|𝑔𝑑𝜃⟩D⃗𝜃

= 1
𝑍

∫D𝜃∗𝜉∗𝜉 exp (𝑔2(𝑑𝜃∗, 𝑑𝜃)) D⃗𝜃

= 1
𝑍

∫D𝜃D𝜃∗𝜉∗𝜉 exp(−𝑆[𝜃, 𝜃∗]). (4.32)

The normalization constant 𝑍 can be regarded as a partition function. The
action 𝑆[𝜃, 𝜃∗] is given as

𝑆[𝜃, 𝜃∗] = 1
4𝜋

∫ 𝑑𝑑𝑥𝜕𝑖𝜃(𝒙)𝜕𝑖𝜃∗(𝒙), (4.33)

which coincides with that of the symplectic fermion theory.
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Correspondence to symplectic fermion

The correlation functions in the QBT systems correspond exactly to those of
symplectic fermion. For the two-point function, we have

⟨𝜉∗| ̂𝜓†
𝑖 (𝒙) ̂𝜓𝑗(𝒚)|𝜉⟩ = 1

𝑍
∫D𝜃∗𝜉∗⟨𝑔𝑑𝜃∗| ̂𝜓†

𝑖 (𝒙) ̂𝜓𝑗(𝒚) ∫ 𝜉|𝑔𝑑𝜃⟩D⃗𝜃

= 𝑔2

𝑍
∫D𝜃D𝜃∗𝜉∗𝜕𝑖𝜃∗(𝒙)𝜕𝑗𝜃(𝒚)𝜉𝑒−𝑆[𝜃,𝜃∗]

= 1
4𝜋

⟨𝜉∗𝜕𝑖𝜃∗(𝒙)𝜕𝑗𝜃(𝒚)𝜉⟩, (4.34)

where we have defined

⟨𝑋⟩ ≔ 1
𝑍

∫D𝜃D𝜃∗𝑋𝑒−𝑆[𝜃,𝜃∗]. (4.35)
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Correspondence to symplectic fermion

For general correlation functions, we have

⟨𝜉∗|𝐹 [ ̂𝜓†]𝐺[ ̂𝜓]|𝜉⟩ = ⟨𝜉∗𝐹[𝑔𝑑𝜃∗]𝐺[𝑔𝑑𝜃]𝜉⟩, (4.36)

for arbitrary functionals 𝐹 and 𝐺. This correspondence is summarized as

̂𝜓 ↔ 𝑑𝜃√
4𝜋

, ̂𝜓† ↔ 𝑑𝜃∗
√

4𝜋
. (4.37)

Note that in addition to simply making this replacement, we need to
additionally insert zero modes 𝜉∗𝜉.

68



Additional results

For more details, please refer to my paper arxiv:2511.16496.

• There exist anyon-like excitations in (2+1)D QBT systems originating from
the underlying symplectic fermion.

• Moving excitations along non-contractible loops induces transitions
between topologically degenerate ground states.

• Action of 2𝜋 rotation for these anyons exhibit a Jordan block structure.
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