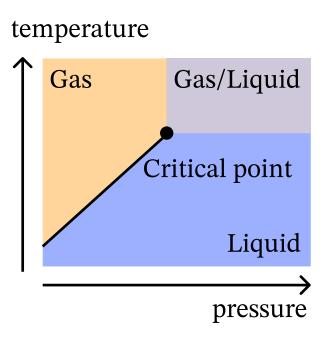
Rigorous lower bound on dynamical exponents of critical frustration-free systems

Rintaro Masaoka, Tomohiro Soejima, Haruki Watanabe

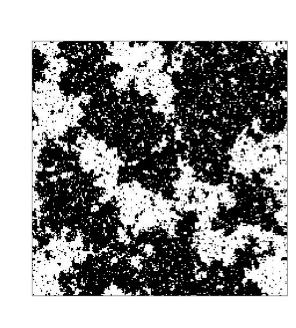
Critical phenomena

Static critical phenomena

e.g. • Critical point of H₂O



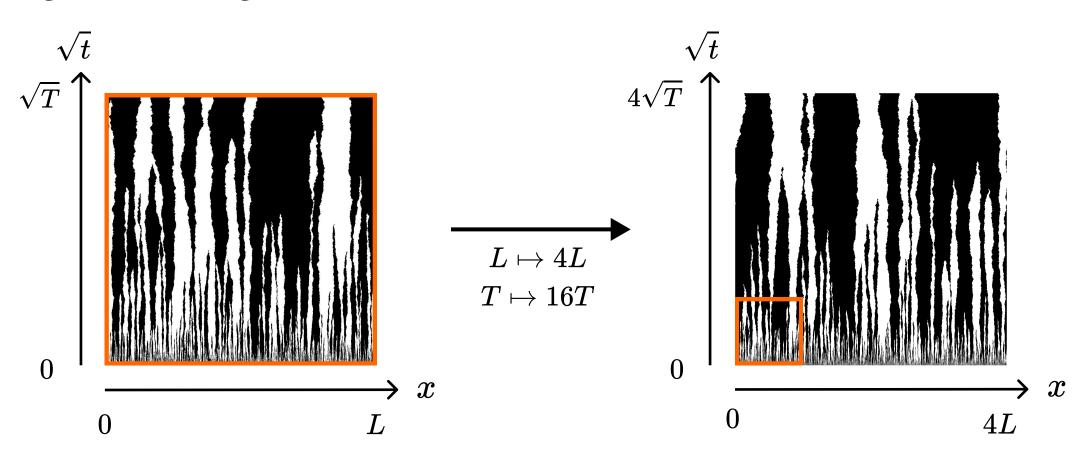
Ising model (model of magnets)



- Universality ← Liquid/gas critical point = Magnet critical point!
- Scale invariance
- Sophisticated understanding (conformal field theory)

Dynamic critical phenomena

e.g. Kinetic Ising model



- Universality
- Lifshitz scale invariance
- Strong anisotropy (time \neq space) \leftarrow Characterized by dynamical exponent z

Def. (relaxation time) \sim (system width)^z

Quantum critical phenomena

- Critical point at zero temperature due to quantum fluctuations
- Gapless
- Typical quantum critical points \approx static critical points

Frustration-free systems

A quantum system defined by the Hamiltonian

$$\hat{H} = \sum_{i \in \Lambda} \hat{H}_i$$

is called frustration-free (FF) iff all local terms are simultaneously minimizable.

→ Solvability of ground states.

Condensed matter physics perspective

FF systems can approximate gapped quantum phases [1].

Non-equilibrium statistical physics perspective

FF systems describes standard relaxation processes with detailed balance [2].

Quantum information perspective

Determining FF-ness is the quantum analogue of k-SAT problem.

Our result

Our study focuses on FF quantum critical points.

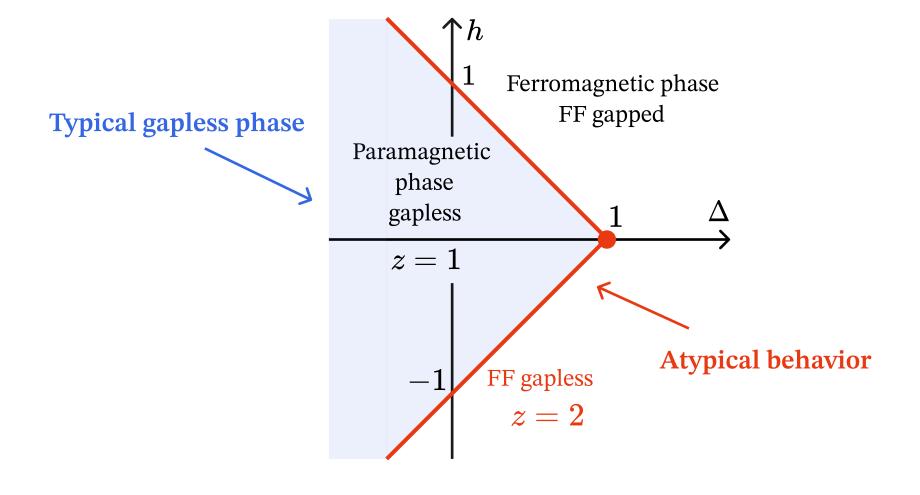
Quantum critical points are characterized by dynamical exponent z.

Def. $\epsilon = (\text{energy gap}) \sim (\text{system width})^{-z}$

- Typical behavior: z = 1 (time \approx space)
- FF critical points: $z \ge 2$ (time \ne space) \leftarrow no complete proof

e.g. XXZ chain with magnetic field:

$$H = -\sum_i (X_i X_{i+1} + Y_i Y_{i+1} + \Delta Z_i Z_{i+1}) - 2h \sum_i Z_i$$

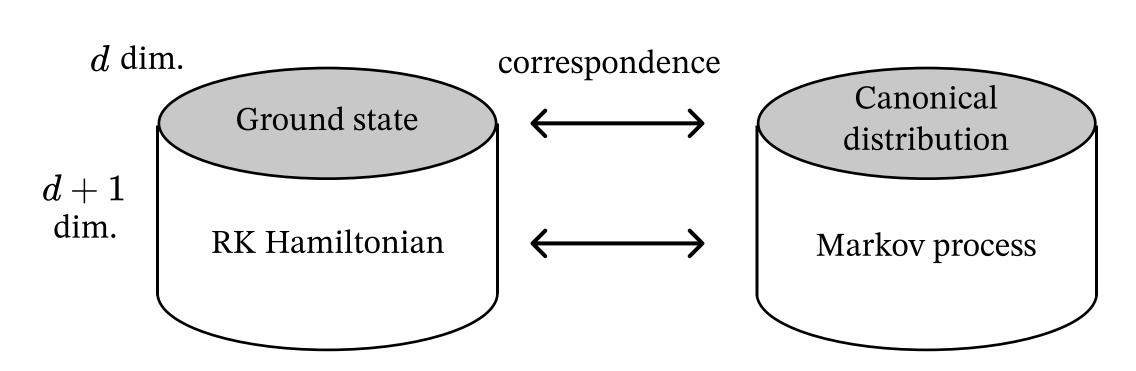


- In Ref. [3], we rigorously showed that $z \ge 2$ for a broad class of FF critical points.
- The key inequality [4]:

$$rac{|\langle\Psi|\hat{\mathcal{O}}(\hat{\mathbb{I}}-\hat{G})\hat{\mathcal{O}}'|\Psi
angle|}{|||\hat{\mathcal{O}}|\Psi
angle|||\hat{\mathcal{O}}'|\Psi
angle||} \leq 2e^2\exp\Biggl(-rac{D(\hat{\mathcal{O}},\hat{\mathcal{O}}')-1}{c-1}\sqrt{rac{\epsilon}{\epsilon+g^2}}\Biggr)$$

Our proof of $z \ge 2$ is also valid for various dynamic critical points.

Rokhsar-Kivelson Hamiltonians (\subset FF) \Leftrightarrow Markov process with detailed balance [2]



Equilibrium states	Dynamical exponent z
Ising (2D)	2.1667(5)[5]
Ising (3D)	2.0245(15)[6]
Heisenberg (3D)	2.033(5)[7]
Three-state Potts (2D)	2.193(5)[8]
Four-state Potts (2D)	2.296(5)[9]

TABLE: Numerical values of z for various dynamic critical points with detailed balance

→ First proof of the empirical fact in the non-equilibrium statistical physics.

Open questions

- Proof of $z \ge 2$ for phase ordering kinetics in $d \ge 2$.
- Field theoretic justification of $z \ge 2$ for stochastic quantization [10].
- Mechanism to protect FF critical points
- Non-Hermitian cases (ASEP has FF-like property but z = 3/2 < 2 under PBC)

References

- [1] A. Kitaev, Annals of Physics 321, 2 (2006).
- [2] C. L. Henley, Journal of Physics: Condensed Matter 16, S891 (2004).
- [3] R. Masaoka, T. Soejima, and H. Watanabe, arxiv:2406.06415 (2024).
- [4] D. Gosset and Y. Huang, Physical Review Letters 116, 097202 (2016).
- [5] M. P. Nightingale and H. W. J. Blöte, Physical Review B 62, 1089 (2000).
- [6] M. Hasenbusch, Physical Review E 101, 022126 (2020).
- [7] A. Astillero and J. J. Ruiz-Lorenzo, Physical Review E 100, 062117 (2019).
- [8] Y. Murase and N. Ito, Journal of the Physical Society of Japan 77, 014002 (2008).
- [9] E. Arashiro, et al., Phys. A: Stat. Mech. Appl. 388, 4379 (2009).
- [10] R. Dijkgraaf, D. Orlando, and S. Reffert, Nuclear Physics B 824, 365 (2010).