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Introduction

Solvable models:

• Free fields, integrable models, conformal field theories

• Frustration-free (FF) systems

Affleck-Kennedy–
Lieb–Tasaki model

Toric code ferromagnetic Heisenberg

Today’s topic

Frustration-freeness serves as a characterization of gapless phases.
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Definition of FF systems

Definition 1. Frustration-freeness

A Hamiltonian𝐻 is called frustration-free (FF) if there exists a decom-
position

𝐻 = ∑
𝑖

𝐻𝑖 + const. (1.1)

such that the ground state (GS) minimizes each 𝐻𝑖 simultaneously.
We can assume 𝐻𝑖 ⪰ 0 (positive semidefinite). Then frustration-
freeness is equivalent to

𝐻𝑖|GS⟩ = 0, ∀𝑖. (1.2)

However, this definition is meaningless.
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Definition of FF systems

Trivial decomposition: 𝐻 = 𝐻.

→ Restrictions must be imposed on the decomposition of 𝐻.

Definition 2. 𝑘-Locality

We assume each 𝐻𝑖 is 𝑘-local for a finite 𝑘, which means 𝐻𝑖 acts non-
trivially only on connected 𝑘 sites.

2-local 4-local
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Example of FF systems

■ 1+1D kinetic Ising model

Locally favored states:

|𝜓1⟩ ≔ 1
√cosh(2𝛽)

(e𝛽|000⟩ + e−𝛽|010⟩), |𝜓2⟩ ≔ 1√
2

(|001⟩ + |011⟩), (1.3)

|𝜓3⟩ ≔ 1
√cosh(2𝛽)

(e𝛽|111⟩ + e−𝛽|101⟩), |𝜓4⟩ ≔ 1√
2

(|110⟩ + |100⟩). (1.4)

• Local Hamiltonian: 𝐻𝑖 = 𝟙 − ∑4
𝑛=1 |𝜓𝑛⟩⟨𝜓𝑛|𝑖−1,𝑖,𝑖+1 (3-local).

• Hamiltonian: 𝐻 = ∑𝐿
𝑖=1 𝐻𝑖

• GS (PBC): |GS⟩ ∝ ∑{𝜎} exp ( 𝛽
2 ∑𝑖 𝜎𝑖𝜎𝑖+1) |{𝜎}⟩.

• Schmidt decomposition: |GS⟩ = ∑4
𝑛=1 𝜆𝑛|𝜓𝑛⟩𝑖−1,𝑖,𝑖+1 ⊗ |𝜙𝑛⟩Λ∖{𝑖−1,𝑖,𝑖+1}
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Remark

Determining whether a given state is a GS becomes easier in FF cases
(if we already have a nice decomposition).

Examples of FF systems have explicit form of the GS for this reason.

In general, it is computationally hard to determine whether a given
Hamiltonian is FF.

• If the decomposition is specified, it is a QMA1-hard problem.
Bravyi, arXiv:quant-ph/0602108

• There is a polynomial-time algorithm to search a nice decomposition
(with looser restrictions on decomposition than 𝑘-locality.)
Takahashi, Rayudu, Zhou, King, Thompson, Parekh, arXiv:2307.15688
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Remark

Non-trivial FF systems need degeneracy of locally favored states.

Let us consider

𝐻 = 𝐻12 ⊗ 𝟙3 + 𝟙1 ⊗ 𝐻23, (1.5)

where

𝐻12 = 𝟙 − |𝜓12⟩⟨𝜓12|, 𝐻23 = 𝟙 − |𝜓23⟩⟨𝜓23|. (1.6)

If 𝐻 is FF under this decomposition,

|GS⟩ = |𝜓12⟩ ⊗ |𝜙3⟩ = |𝜙1⟩ ⊗ |𝜓23⟩ = |𝜙1⟩ ⊗ |𝜙2⟩ ⊗ |𝜙3⟩. (1.7)

Thus GS must be a trivial tensor product state.

FF-ness is unstable under general perturbations.
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Gapped FF systems vs Gapless FF systems

FF Hamiltonians can approximate general gapped quantum phases.

• Many representative models of gapped phases.

Toric code: Z2 topological order

AKLT model: Haldane phase

• The GS of a gapped Hamiltonian is also the GS of a (superpolynomially
local) FF Hamiltonian. Kitaev, Ann. Phys. 321(1), 2-111 (2006).
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Gapped FF systems vs Gapless FF systems

However, gapless FF systems exhibit different low-energy behaviors
than typical gapless systems (as we will see).

FF gapless systems are useless as an approximation of gapless systems.

↔ FF gapless systems are interesting in their own right.

ferromagnetic Heisenberg Rokhsar–Kivelson point critical kinetic Ising
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Dynamic critical exponents

We focus on dynamic critical exponents.

Definition 3. Spectral gap

Let us take the ground state energy of 𝐻 to be zero. The spectral gap
gap(𝐻) is the smallest nonzero eigenvalue of 𝐻.

Definition 4. Dynamic critical exponent

For gapless systems, the dynamic critical exponent 𝑧 is defined by

gap(𝐻) ∼ 𝐿−𝑧 (2.1)

where 𝐿 is the linear size of the system.

• Typical gapless systems : 𝑧 = 1
• FF gapless systems : 𝑧 ≥ 2 ( No complete proof )
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Dynamic critical exponents

Critical points with 𝑧 are expected to have invariance under the Lifshitz
scale transformation given by

𝒙 ↦ 𝜆𝒙, 𝑡 ↦ 𝜆𝑧𝑡, (𝜆 > 0). (2.2)

Lifshitz scale invariance of the zero-temp. kinetic Ising model (𝑧 = 2).
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Dynamic critical exponents

Gapless systems with 𝑧 are expected to have the dispersion relation

𝐸𝑘 ∼ 𝑘𝑧. (2.3)

Conjecture: gapless FF systems have quadratic or softer dispersion.
Masaoka, Soejima, Watanabe, PRB 110, 195140 (2024)

• Coleman’s theorem in the contexts of relativistic field theory:
Spontaneous symmetry breaking (SSB) of continuous symmetries does
not occur in 1+1D systems at 𝑇 = 0.
Coleman, Commun.Math. Phys. 31, 259–264 (1973).

• However, it can occur in 1+1D gapless FF systems because of the
quadratic of softer dispersions. Watanabe, Katsura, Lee, PRL 133, 176001 (2024)
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Case study: XXZ model + magnetic field

gapless FF ⇒ 𝑧 ≥ 2

Let us check 𝑧 ≥ 2 for gapless FF systems in specific examples.

𝐻 = −
𝐿

∑
𝑖=1

(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + Δ𝑍𝑖𝑍𝑖+1) + 2ℎ
𝐿

∑
𝑖=1

𝑍𝑖 + const., (2.4)

FF gapped

FF gapless

Heisenberg

Ferromagnetic

Paramagnetic
gapless

XXZ model with a magnetic field. For example, see the textbook by Franchini (2017).
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Case study: quantum Ising model + cluster interaction

𝐻 = −
𝐿

∑
𝑖=1

(𝜆1𝑍𝑖𝑍𝑖+1 + 𝜆2𝑍𝑖−1𝑋𝑖𝑍𝑖+1) +
𝐿

∑
𝑖=1

𝑋𝑖 + const. (2.5)

FF gapped
FF gapless

from Kumar, Kartik, Rahul, Sarkar, Sci. Rep. 11, 1004 (2021). modified
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Previous result and Our result

There are proofs of 𝑧 ≥ 2 in the case of open boundary condition.
Gosset, Mozgunov, J. Math. Phys. 57, 091901 (2016). Anshu, PRB 101, 165104 (2020).

Lemm, Xiang, J. Phys. A: Math. Theor. 55 295203 (2022).

These results do not give a rigorous bound for the bulk modes since there
can be edge modes in OBC.

We show that 𝑧 ≥ 2 for a wide range of FF gapless models without assuming
any boundary conditions (but assuming additional assumptions).
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Gosset–Huang inequality

The techniques needed for the proof had already established.

Theorem 1. Gosset–Huang inequality Gosset, Huang, PRL 116, 097202. (2016)

Let 𝐻 be an FF Hamiltonian and

• 𝐺 : Projector onto the ground space,
• O𝒙,O′

𝒚 : Local operators

Then

|⟨GS|O𝒙(𝟙 − 𝐺)O′
𝒚|GS⟩|

‖O†
𝒙|GS⟩‖‖O′

𝒚|GS⟩‖
≤ 2 exp (−𝐶|𝒙 − 𝒚|√gap(𝐻) ) , (2.6)

where 𝐶 is a positive constant.

(Gosset and Huang were aware of the application to the gapless FF systems,
but they did not demonstrate the scope of its applicability.)
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𝑧 ≥ 2 from Gosset–Huang inequality

Definition 5. “Critical” FF systems

We say that an FF system is critical, if there exists a correlation func-
tion such that

|𝒙 − 𝒚| ∼ 𝐿 and
|⟨GS|O𝒙(𝟙 − 𝐺)O′

𝒚|GS⟩|
‖O†

𝒙|GS⟩‖‖O′
𝒚|GS⟩‖

≳ 1
𝐿Δ , (Δ > 0). (2.7)

Corollary 1. Masaoka, Soejima, Watanabe arXiv:2406.06415.

Critical FF systems satisfy 𝑧 ≥ 2.

Proof: From the Gosset–Huang inequality,

1
𝐿Δ ≲

|⟨GS|O𝒙(𝟙 − 𝐺)O′
𝒚|GS⟩|

‖O†
𝒙|GS⟩‖‖O′

𝒚|GS⟩‖
≤ 2 exp (−𝐶𝐿√gap(𝐻) ) . (2.8)

This inequality breaks for sufficiently large 𝐿 if 𝑧 < 2. �
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𝑧 ≥ 2 from Gosset–Huang inequality

Critical FF systems satisfy 𝑧 ≥ 2.

Our argument is highly general because we do not assume

• boundary condition

• spatial dimension

• structure of the lattice

• translational invariance

Also, our result can be extended to fermionic FF systems.

(Of course, we should explicitly construct an algebraic correlation function.)
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Our result: 𝑧 ≥ 2 for dynamic critical phenomena

We also prove 𝑧 ≥ 2 for dynamic critical phenomena, leaving the contexts of
quantum systems.

Critical points 𝑧 (numerical) References
Ising (2D) 2.1667(5) ≥ 2 Nightingale, Blöte, PRB 62, 1089 (2000).

Ising (3D) 2.0245(15) ≥ 2 Hasenbusch, PRE 101, 022126 (2020).

Heisenberg (3D) 2.033(5) ≥ 2 Astillero, Ruiz-Lorenzo, PRE 100, 062117 (2019).

three-state Potts (2D) 2.193(5) ≥ 2 Murase, Ito, JPSJ 77, 014002 (2008).

four-state Potts (2D) 2.296(5) ≥ 2 Phys. A: Stat. Mech. Appl. 388, 4379 (2009).

Dynamic critical exponents of Markov processes relaxing to critical equilibrium states.
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3. Goneralized Rokhsar–Kivelson Hamiltonians and Markov processes

We focus on a specific class of FF Hamiltonians.

Definition 6. (Generalized) Rokhsar–Kivelson Hamiltonian

𝐻RK = ∑𝑖 𝐻RK
𝑖 is a (generalized) RK Hamiltonian if

1. Hamiltonian is FF

2. GS is written as

|ΨRK⟩ = ∑
C

√𝑤(C)
Z

|C⟩, Z = ∑
C

𝑤(C), (3.1)

where 𝑤(C) is a Boltzmann weight of a classical statistical
system.

3. The off-diagonal elements of 𝐻𝑖 are non-positive

There are several names for this class: stoquastic FF Hamiltonian, stochastic
matrix form, stochastic quantization.

22



Correspondence between RK Hamiltonians and Markov processes

RK Hamiltonians correspond to Markov processes with local state updates
and the detailed balance condition.

Henley, J. Phys.: Condens. Matter 16 S891 (2004).

Castelnovo et al., Ann. Phys. 318, 316 (2005).

RK Hamiltonian Markov process

Ground state

dim.

dim.

Canonical

distribution 

correspondence

Correspondence between RK Hamiltonians and Markov processes.

23



Correspondence between RK Hamiltonians and Markov processes

The correspondence is explicitly given by

(𝑊𝑖)CC′ ≔ −√𝑤(C) (𝐻RK
𝑖 )CC′

1
√𝑤(C′)

. (3.2)

𝑊 ≔ ∑𝑖 𝑊𝑖 is the transition-rate for the corresponding Markov process.

Correspondense between RK Hamiltonians and Markov processes

Imaginary-time Schrödinger eq. Master eq.
d|𝜓(𝑡)⟩/d𝑡 = −𝐻RK|𝜓(𝑡)⟩ d𝑝(𝑡)/d𝑡 = 𝑊𝑝(𝑡)
Ground state Steady state
|ΨRK⟩ = ∑C

√𝑤(C)/Z |C⟩ 𝑝eq(C) = 𝑤(C)/Z
Symmetricity Detailed balance condition
(𝐻RK

𝑖 )CC′ = (𝐻RK
𝑖 )CC′ (𝑊𝑖)CC′𝑤(C′) = (𝑊𝑖)C′C𝑤(C)

FF-ness Probability conservation
⟨ΨRK|𝐻RK

𝑖 = 0 ∑C(𝑊𝑖)CC′ = 0
Dynamic critical exponent Dynamic critical exponent
gap(𝐻RK) ∼ 𝐿−𝑧 𝜏 ≔ 1/ gap(−𝑊) ∼ 𝐿𝑧
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Example: 2+1D kinetic Ising model

■ 2+1D kinetic Ising model (Gibbs sampling)

Boltzmann weight:

𝑤(C) = exp (𝛽 ∑
⟨𝑖,𝑗⟩

𝜎𝑖𝜎𝑗) (𝜎𝑖 = ±1). (3.3)

The Gibbs sampling (heat bath) algorithm is given by

(𝑊𝑖)C′C = −(𝑊𝑖)CC = 𝑤(C′)
𝑤(C) + 𝑤(C′)

, (3.4)

where |C′⟩ ≔ 𝜎𝑥
𝑖 |C⟩. We do not assume any conserved quantity (model A).

The corresponding RK Hamiltonian is

𝐻RK
𝑖 = 1

2 cosh(𝛽 ∑𝑗∼𝑖 𝑍𝑗)
(e−𝛽𝑍𝑖 ∑𝑗∼𝑖 𝑍𝑗 − 𝑋𝑖) . (3.5)
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Example: 2+1D kinetic Ising model

The quantum phase diagram is obtained from the classical phase diagram.

disordered

high temp. low temp.

FF gapped

ordered

FF gapless

critical

FF gapless

Classical

Quantum

We focus on the critical point (ordered phase is another interesting topic).
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Example: 2+1D kinetic Ising model

At 𝛽 = 𝛽𝑐 ≈ 0.44, the relaxation time diverges as 𝐿 → ∞. (𝑧 ≈ 2.17)

Markov Chain Monte Carlo simulation for 2+1D kinetic Ising model
27



Dynamic critical exponents for various critical points

Critical points 𝑧 (numerical) References
Ising (2D) 2.1667(5) ≥ 2 Nightingale, Blöte, PRB 62, 1089 (2000).

Ising (3D) 2.0245(15) ≥ 2 Hasenbusch, PRE 101, 022126 (2020).

Heisenberg (3D) 2.033(5) ≥ 2 Astillero, Ruiz-Lorenzo, PRE 100, 062117 (2019).

three-state Potts (2D) 2.193(5) ≥ 2 Murase, Ito, JPSJ 77, 014002 (2008).

four-state Potts (2D) 2.296(5) ≥ 2 Phys. A: Stat. Mech. Appl. 388, 4379 (2009).

Dynamic critical exponents of RK Hamiltonians of critical points

RK Hamiltonians of critical points, called conformal quantum critical points
(CQCP), seemed to satisfy 𝑧 ≥ 2.

• Conjectured in Isakov, Fendley, Ludwig, Trebst, Troyer, PRB 83, 125114 (2011).

• Previous rigorous result: 𝑧 ≥ 2 − 𝜂. Halperin, PRB 8, 4437 (1973).
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𝑧 ≥ 2 for conformal quantum critical points

Theorem 2. Masaoka, Soejima, Watanabe arXiv:2406.06415.

RK Hamiltonians of critical points (CQCPs) satisfy 𝑧 ≥ 2.

Our framework: If there is a correlation function such that

|𝒙 − 𝒚| ∼ 𝐿,
|⟨Ψ|O𝒙(𝟙 − 𝐺)O′

𝒚|Ψ⟩|
‖O†

𝒙|Ψ⟩‖‖O′
𝒚|Ψ⟩‖

≳ 1
𝐿Δ , (3.6)

then 𝑧 ≥ 2.
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𝑧 ≥ 2 for conformal quantum critical points

Let us explicitly construct an algebraic correlation function to prove 𝑧 ≥ 2.

Quantum classical correspondence for a diagonal operator 𝑂(C)𝛿CC′ :

⟨ΨRK|𝑂|ΨRK⟩ = ∑
C

𝑂(C)𝑤(C)
Z

≕ ⟨𝑂⟩. (3.7)

There is an operator 𝑂𝑖 such that

⟨𝑂𝑖⟩ = 0, ⟨𝑂2
𝑖 ⟩ = const., ⟨𝑂𝑖𝑂𝑗⟩ ∼ 1

|𝒙𝑖 − 𝒙𝑗|2Δ𝑂
, (3.8)

where Δ𝑂 is the scaling dimension of 𝑂𝑖. Thus, if |𝒙𝑖 − 𝒙𝑗| ∼ 𝐿,

|⟨ΨRK|O𝑖(𝟙 − 𝐺)O𝑗|ΨRK⟩|
‖O𝑖|ΨRK⟩‖‖O𝑗|ΨRK⟩‖

=
|⟨O𝑖O𝑗⟩ − ⟨O𝑖⟩⟨O𝑗⟩|

⟨O2
𝑖 ⟩

∼ 𝐿−2ΔO . (3.9)

Here, we assumed 𝐺 = |ΨRK⟩⟨ΨRK| for simplicity.

Therefore, 𝑧 ≥ 2.
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No-go theorem for local MCMC methods with detailed balance

Rephrasing the theorem in the language of Markov processes, we obtain the
following no-go theorem.

No-go theorem

Markov processes for critical points with local state updates and the
detailed balance condition satisfy 𝑧 ≥ 2.

→ First proof of an empirical fact known in the contexts of dynamic critical
phenomena.
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Remark

We can consider more general ground states with a phase factor:

|GS⟩ = ∑
C

ei𝜃(C)√𝑤(C)
Z

|C⟩, 𝜃(C) ∈ R. (3.10)

■ Fine-tuned Fibonacci Levin Wen model
Fendley, Fradkin, PRB 72, 024412 (2005)., Fendley, Ann. Phys. 323(12), 3113-3136 (2008).

• 𝑤(C) represents 𝑐 = 14/15 CFT.

• GS shows algebraic correlations.

• It cannot be mapped to a Markov process due to the sign problem.

We can show 𝑧 ≥ 2 also in this case since phases ±𝜃(C) cancel in correlation
functions of diagonal operators.
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Stochastic dynamics with 𝑧 < 2

By violating the assumptions in the no-go theorem, one can create Markov
processes with faster relaxation with 𝑧 < 2.

■ Wolff cluster algorithm Wolff, PRL. 62, 361 (1988).

Locality: ×, Detailed balance condition: ✓

State update of the Wolff cluster algorithm

𝑧 ≈ 0.3 for the 2D Ising critical point. Liu et al. PRB 89, 054307 (2014).
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Stochastic dynamics with 𝑧 < 2

■ Asymmetric simple exclusion process (ASEP)

Locality: ✓, Detailed balance condition: ×

XXZ model with a non-Hermitian term:

𝐻𝑖 = 1
4

(1 − Δ𝑍𝑖𝑍𝑖+1) − 1 + 𝑠
2

𝜎+
𝑖 𝜎−

𝑖+1 − 1 − 𝑠
2

𝜎−
𝑖 𝜎+

𝑖+1 + 𝑠
2

(𝑍𝑖 − 𝑍𝑖+1) (3.11)

Δ < 1: Gapless phase (𝑧 = 1)
Δ > 1: Gapped phase
Δ = 1: Stochastic line

• 𝑠 = 0: Heisenberg (𝑧 = 2, EW class)

• 𝑠 > 0: ASEP (𝑧 = 3/2, KPZ class)
Kim, PRE 52, 3512 (1995).

Gwa, Spohn, PRA 46, 844 (1992).

Heisenberg
XXZ

ASEP

Gapless

CFT

Gapped

Phase diagram of XXZ model with
a non-Hermitian term.
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Frustration-free field theory

FF models are expected to flow into FF effective field theories.

Definition 7. Frustration-free field teory (FFFT)

A field theory is FF if the Hamiltonian density H(𝑥) is positive semi-
definite and

∀𝑥, H(𝑥)|GS⟩ = 0. (4.1)

In the following slides, we look at some examples of FF field theories.
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Topological quantum field theory

Topological quantum field theories are FF.

e.g. Chern–Simons theory:

𝑆CS[𝐴] = 𝑘
4π

∫ d𝑡 d2𝑥 𝜀𝜇𝜈𝜆 Tr [𝐴𝜇𝜕𝜈𝐴𝜆 + 2
3

𝐴𝜇𝐴𝜈𝐴𝜆] . (4.2)

Hamiltonian density:

H(𝑥) = 𝑒2 Tr [𝐸†(𝑥)𝐸(𝑥)] , 𝐸(𝑥) = 𝛿
𝛿𝐴𝑧(𝑥)

− 𝑘
4π

𝐴 ̄𝑧(𝑥). (4.3)

GS wave functional Ψ[𝐴] satisfies 𝐸(𝑥)Ψ[𝐴] = 0 ⇒ FF.

Another derivation� �
H(𝑥) = − 2

√|𝑔|
𝛿𝑆CS[𝐴, 𝑔]

𝛿𝑔00(𝑥)
= 0. (4.4)

� �
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Topological quantum field theory

Leeh-Schlieder theorem

Relativistic field theories satisfy

O(𝑥)|GS⟩ = 0 ⇒ O(𝑥) = 0, (4.5)

where O(𝑥) is a local operator.

Corollary

Relativistic field theories are not FF except for the case of H(𝑥) = 0.
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Stochastic quantization

We can construct the 𝑑 + 1-dim. FFFT from a 𝑑-dim. field theory by
stochastic quantization ( ≈ RK Hamiltonians ).
Parisi, Wu, Sci. sin, 24(4), 483-496, (1981), Dijkgraaf, Orlando, Reffert, arxiv:0903.0732 (2009)

Let us consider the following master equation (Fokker–Planck equation).

𝜕
𝜕𝑡

𝑃 [𝜙, 𝑡] = 𝑊𝑃[𝜙, 𝑡]

= 1
2

∫ d𝑑𝑥 𝛿
𝛿𝜙(𝑥)

( 𝛿𝑆cl
𝛿𝜙(𝑥)

+ 𝛿
𝛿𝜙(𝑥)

) 𝑃 [𝜙, 𝑡], (4.6)

where

• 𝑃 [𝜙, 𝑡] is a probability distribution,

• 𝑆cl[𝜙] is the action of an Euclidean field theory.
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Stochastic quantization

Correspondence between Hamiltonian and transition-rate:

𝐻 = − 1√
e−𝑆cl

𝑊
√

e−𝑆cl = ∫ d𝑑𝑥H(𝑥), (4.7)

where

H(𝑥) = 1
2
Q†(𝑥)Q(𝑥), Q(𝑥) ≔ 𝛿

𝛿𝜙(𝑥)
+ 1

2
𝛿𝑆cl

𝛿𝜙(𝑥)
. (4.8)
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Stochastic quantization

RK Hamiltonian

Ground state

dim.

dim.
correspondence

correspondence

Coarse graining

Discrete

Continuous

Coarse graining

Ground State

dim.

dim. FFFT

Markov process
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𝑧 ≥ 2 for stochastic quantization of CFT

We can construct the 𝑑 + 1-dim. gapless FFFT from a 𝑑-dim. CFT.
These theories are considered to be the effective field theories of CQCPs (RK
Hamiltonians of critical points).

Our results providemicroscopic proof of 𝑧 ≥ 2 for the stochastic quan-
tization of a CFT.
However, macroscopic understanding is still lacking.
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Summary

Our study highlights the unique nature of the gapless FF systems. We have
established 𝑧 ≥ 2 for dynamic critical exponents of various FF systems:

• Conformal quantum critical points. (Stochastic quantization of CFT)

• FF systems with a plane-wave ground state.

• FF systems with a hidden correlation.

Also, we established 𝑧 ≥ 2 for Markov processes with locality and detailed
balance condition.
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Open questions

Complete proof of 𝑧 ≥ 2 for gapless FF systems.

Is there a macroscopic proof of 𝑧 ≥ 2?

How fast does non-Hermiticity (breaking detailed balance) speed up
relaxation?
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Open questions

FF line 

Gapped

phase

Another

phase

Gapless lineGapless line

Transition between what and what?
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Open questions

An interesting example is in Verresen et al., PRX 11, 041059 (2021).

𝐻 = − ∑
𝑖

(𝑍𝑖𝑍𝑖+1 + 𝑋𝑖) (5.1)

𝐻′ = − ∑
𝑖

(𝑌𝑖𝑌𝑖+1 + 𝑋𝑖) (5.2)

𝐻(𝜆) = 𝜆𝐻 + (1 − 𝜆)𝐻′ (0 ≤ 𝜆 ≤ 1). (5.3)

This interpolation preserves Z2 × Z𝑇
2 symmetry.

FFIsing CFT Ising CFT
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THANK YOU.
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