Rigorous lower bound of dynamic critical exponents in critical frustration-free systems

(arXiv:2406.06415)

Rintaro Masaoka (Univ. of Tokyo)

October 28th, 2024

Collaborators

Tomohiro Soejima (Harvard Univ.)

Haruki Watanabe (Univ. of Tokyo)

Table of contents

- 1. Introduction
- 2. Our results
- 3. Gosset-Huang inequality
- 4. Rokhsar–Kivelson Hamiltonians and Markov processes
- 5. Critical FF systems from critical points
- 6. Other critical FF systems
- 7. Summary and open questions

1. Introduction

- 2. Our results
- 3. Gosset-Huang inequality
- 4. Rokhsar-Kivelson Hamiltonians and Markov processes
- 5. Critical FF systems from critical points
- 6. Other critical FF systems
- 7. Summary and open questions

Introduction

Quantum many-body systems are notoriously difficult to solve. One effective way to gain qualitative insights is to start with exactly solvable models and uncover the underlying universal physics. Examples of such solvable models include:

- · Free field theories
- · 2D conformal field theories
- · Models solvable by Bethe ansatz

The topic of today's talk, <u>frustration-free systems</u>, can also be seen as part of this class of solvable models. However, their solvability is relatively limited: while the ground state can be explicitly written down, determining the excited states is generally difficult.

Introduction

Definition 1. Frustration-freeness

A Hamiltonian H is called frustration-free (FF) if and only if there exists a decomposition

$$H = \sum_{i} H_i + E_0 \mathbb{1}, \quad E_0 \in \mathbb{R}, \tag{1.1}$$

and the following conditions hold.

- \cdot Each local Hamiltonian H_i is positive semidefinite with a zero eigenvalue.
- . There is a ground state (GS) $|\Psi\rangle$ such that $H_i|\Psi\rangle=0$ for all H_i .

Definition 2. Locality

In this talk, we assume each H_i is k-local for a finite k, which means H_i acts nontrivially only on connected k sites.

5

Examples of FF systems

 X_i, Y_i, Z_i : Pauli matrices at site i.

 $\blacksquare d + 1$ D spin-1/2 ferromagnetic Heisenberg model

Let Λ be a d-dimensional cubic lattice. We consider s=1/2 spins on vertices of Λ . The Hamiltonian is given by

$$H=\sum_{\langle i,j \rangle} H_{i,j}, \quad \text{where } \langle i,j \rangle \text{ is a pair of adjacent vertices,}$$

$$H_{i,j} = \frac{1}{4} (\mathbb{1} - X_i X_j - Y_i Y_j - Z_i Z_j) \ge 0, \tag{1.3}$$

$$\ker H_i = \operatorname{Span}\{|00\rangle, |11\rangle, |01\rangle + |10\rangle\}. \tag{1.4}$$

Ground states:

$$|\Psi_N\rangle = \frac{1}{\sqrt{\mathcal{Z}_N}} \sum_{\{n_i\}} \delta\left(\sum_{i \in \Lambda} n_i - N\right) |\{n_i\}_{i \in \Lambda}\rangle,$$
 (1.5)

where \mathcal{Z}_N is the normalization constant. These ground states satisfy $H_i|\Psi_N\rangle=0$, thus this model is FF.

1. Introduction

2. Our results

- 3. Gosset-Huang inequality
- 4. Rokhsar-Kivelson Hamiltonians and Markov processes
- 5. Critical FF systems from critical points
- 6. Other critical FF systems
- 7. Summary and open questions

Gapped FF vs Gapless FF

Can FF Hamiltonians describe low-energy behaviors of quantum phases?

- ➤ Yes, for many gapped phases.
 - Examples: Toric code, Affleck-Kennedy–Lieb–Tasaki model, etc.
 - GS of gapped Hamiltonian is GS of some superpolynomially local FF Hamiltonian. Kitaev, Ann. Phys. 321(1), 2-111 (2006).
- ▶ No, for typical gapless phases (with emergent Lorentz symmetry).
 - FF gapless systems often exhibit different low-energy behaviors than typical gapless systems (as we will see).

Gapped FF vs Gapless FF

We focus on dynamic critical exponents.

Definition 3. Spectral gap

Let H be a positive semidefinite matrix with a zero eigenvalue. The spectral gap ${
m gap}(H)$ is the smallest nonzero eigenvalue of H.

Definition 4. Dynamic critical exponent

For gapless systems, the dynamic critical exponent z is defined by

$$gap(H) \sim L^{-z} \tag{2.1}$$

where L is the linear dimension of the system.

- Typical gapless systems : z = 1,
- FF gapless systems : $z \ge 2$ (no complete proof)

Previous studies: case study

The dynamic critical exponent z is defined by $\mathrm{gap}(H) \sim L^{-z}.$

$$H = -\sum_{i=1}^{L} (X_i X_{i+1} + Y_i Y_{i+1} + \Delta Z_i Z_{i+1}) + 2h \sum_{i=1}^{L} Z_i + \text{const.}, \qquad (2.2)$$

$$H = -\sum_{i=1}^{L} (\lambda_1 Z_i Z_{i+1} + \lambda_2 Z_{i-1} X_i Z_{i+1}) + \sum_{i=1}^{L} X_i + \text{const.}$$
 (2.3)

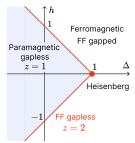


Figure 1: XXZ model with a magnetic field. For example, see the textbook by Franchini (2017).

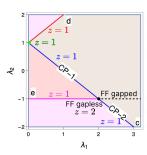


Figure 2: Kumar et al., Sci Rep 11, 1004 (2021)., modified

Previous studies: case study

The dynamic critical exponent z is defined by $gap(H) \sim L^{-z}$.

We can construct gapless FF Hamiltonians from critical points of classical statistical systems (as explained later).

The dynamic critical exponents can be calculated numerically using the Markov chain Monte Carlo methods.

Critical points	z (numerical)	References
Ising (2D)	$2.1667(5) \ge 2$	Nightingale, Blöte, PRB 62, 1089 (2000).
Ising (3D)	$2.0245(15) \ge 2$	Hasenbusch, PRE 101, 022126 (2020).
Heisenberg (3D)	$2.033(5) \ge 2$	Astillero, Ruiz-Lorenzo, PRE 100, 062117 (2019).
three-state Potts (2D)	$2.193(5) \ge 2$	Murase, Ito, JPSJ 77, 014002 (2008).
four-state Potts (2D)	$2.296(5) \ge 2$	Phys. A: Stat. Mech. Appl. 388, 4379 (2009).

Table 1: Dynamic critical exponents of FF Hamiltonians corresponding to critical statistical systems.

Previous studies: $z \ge 2$ for open boundary condition

Let Λ_L^{PBC} be a D-dimensional lattice with side length L in periodic boundary condition, and let $\Lambda_l^{\mathrm{OBC}} \subset \Lambda_L^{\mathrm{PBC}}$ be a subset with side length l. We consider FF Hamiltonians on these lattices given by

$$H_{\Lambda_L^{\mathrm{PBC}}} \coloneqq \sum_{i \in \Lambda_L^{\mathrm{PBC}}} H_i, \quad H_{\Lambda_l^{\mathrm{OBC}}} \coloneqq \sum_{i \in \Lambda_l^{\mathrm{OBC}}} H_i$$
 (2.4)

Then the following types of inequalities are known for various lattices.

Knabe, J. Stat. Phys. 52, 627-638 (1988).

Gosset, Mozgunov, J. Math. Phys. 57, 091901 (2016).

Lemm, Xiang, J. Phys. A: Math. Theor. 55 295203 (2022).

$$\operatorname{gap}(H_{\Lambda_l^{\mathrm{OBC}}}) \leq \operatorname{const.} \times (\operatorname{gap}(H_{\Lambda_L^{\mathrm{PBC}}}) + O(l^{-2})). \tag{2.5}$$

Especially if $\lim_{L \to \infty} \mathrm{gap}(\Lambda_L^{\mathrm{PBC}}) = 0$, $\mathrm{gap}(H_{\Lambda_l^{\mathrm{OBC}}}) \sim l^{-z} \lesssim l^{-2}$. Thus $z \geq 2$ for FF gapless systems in OBC.

Our result

Is the $O(l^{-2})$ excitation in the bulk or on the edge? Knabe-type arguments cannot answer this question.

 \rightarrow We show that $z \ge 2$ for a wide range of FF gapless models without assuming any boundary conditions (but assuming additional assumptions).

Our proof relies on the following inequality.

Theorem 1. Gosset-Huang inequality Gosset, Huang, PRL 116, 097202. (2016)

Let H be an FF Hamiltonian and

 $\cdot |\Psi\rangle$: Ground state of H,

 $\cdot G$: Projector onto the ground subspace,

 $\cdot \epsilon$: Spectral gap of H,

 \cdot $\mathcal{O}_x, \mathcal{O}_y'$: Local operators on the positions x and y, respectively.

Then

$$\frac{|\langle \Psi | \mathcal{O}_x(\mathbb{1} - G) \mathcal{O}_y' | \Psi \rangle|}{\|\mathcal{O}_x^{\dagger} | \Psi \rangle \| \|\mathcal{O}_y' | \Psi \rangle \|} \le 2 \exp\left(-\text{const.} \times |x - y| \sqrt{\epsilon}\right). \tag{2.6}$$

A more precise version is explained later.

$z \ge 2$ from Gosset–Huang inequality

Definition 5. "Criticality" for FF systems

We say that an FF Hamiltonian is critical, if there exists a correlation function such that

$$|x-y| \sim L \quad \text{and} \quad \frac{|\langle \Psi | \mathcal{O}_x (\mathbb{1} - G) \mathcal{O}_y' | \Psi \rangle|}{\|\mathcal{O}_x^{\dagger} | \Psi \rangle \| \|\mathcal{O}_y' | \Psi \rangle \|} \gtrsim L^{-\Delta}, \tag{2.7}$$

where Δ is a positive number.

Corollary 1. Masaoka, Soejima, Watanabe arXiv:2406.06415.

Critical FF Hamiltonians have dynamic critical exponent $z \ge 2$.

Proof: From the Gosset-Huang inequality,

$$L^{-\Delta} \lesssim \frac{|\langle \Psi | \mathcal{O}_x(\mathbb{1} - G) \mathcal{O}_y' | \Psi \rangle|}{\|\mathcal{O}_x^{\dagger} | \Psi \rangle \|\|\mathcal{O}_y' | \Psi \rangle\|} \leq 2 \exp\left(-\text{const.} \times L \sqrt{\epsilon}\right). \tag{2.8}$$

This inequality breaks for sufficiently large L unless $\epsilon \lesssim 1/L^2$.

$z \ge 2$ from Gosset–Huang inequality

Critical FF Hamiltonians have dynamic critical exponent $z \geq 2$.

Our argument is highly general because we do not assume

- · boundary condition
- spatial dimension
- · structure of the lattice
- translational invariance

Also, note that our result can be extended to fermionic FF systems with bosonic local Hamiltonians.

Of course, we should show criticality to use our argument.

Are all gapless FF systems also critical?

ightarrow No, in general. However, almost all known gapless FF systems are critical.

Our framework

Critical FF systems $\Rightarrow z \geq 2$

The proof relies on the Gosset-Huang inequality. (Sec. 3)

How to construct FF systems? (Sec. 4)

- Rokhsar–Kivelson (RK) Hamiltonians ← correspond to Markov processes.
- · Several other ways

When can criticality be shown?

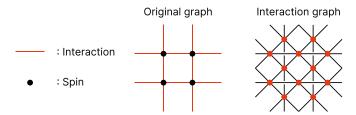
- RK Hamiltonians from critical statistical systems. (Sec. 5)
- Plane-wave GS (Sec. 6)
- · Hidden criticality from "local" excitations (Sec. 6)

- 1. Introduction
- 2. Our results
- 3. Gosset-Huang inequality
- 4. Rokhsar-Kivelson Hamiltonians and Markov processes
- 5. Critical FF systems from critical points
- 6. Other critical FF systems
- 7. Summary and open questions

Let us review the derivation of the Gosset–Huang inequality. Gosset, Huang, PRL 116, 097202 (2016).

Definition 6. Interaction graph

- Vertices: $1, \dots, N = \text{number of } H_i$.
- i and j are adjacent $(i \sim j)$ if $[H_i, H_j] \neq 0$.
- g_i : degree of i = number of vertices adjacent to i.
- $\boldsymbol{\cdot} \ g\coloneqq \max_i g_i.$
- \blacksquare Nearest neighbor interactions on the square lattice (g=6)



Definition 7. Distance between local Hamiltonians

Distance $\tilde{d}(H_i,H_j)$ between H_i and H_j is given by the number of edges in the shortest path connecting i and j.

Definition 8. Distance between operators

$$\tilde{d}(\mathcal{O},\mathcal{O}')\coloneqq 2+\min\{\tilde{d}(H_i,H_j)\mid [\mathcal{O},H_i]\neq 0, [\mathcal{O}',H_j]\neq 0\} \tag{3.1}$$

Figure 3: $\tilde{d}(H_i, H_j) = 3$

Figure 4: $\tilde{d}(\mathcal{O}, \mathcal{O}') = 5$

Definition 9. Chromatic number

The chromatic number c is the smallest number of colors needed for the coloring $i \mapsto \operatorname{color}(i) \in \{1, \dots, c\}$ such that

$$i \sim j \Rightarrow \operatorname{color}(i) \neq \operatorname{color}(j).$$
 (3.2)

- c=2 for bipartite graphs
- $c \le 4$ for planar graphs (four-color theorem)
- The greedy algorithm ensures $c \leq g+1$.

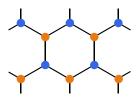


Figure 5: Coloring of the honeycomb lattice

First, we replace each local Hamiltonian with an orthogonal projector while preserving its kernel. This operation does not change the ground states and the dynamic critical exponent.

Theorem 2. Gosset-Huang inequality Gosset, Huang, PRL 116, 097202 (2016).

Let

 $\cdot \left| \Psi \right> \;$: GS of H

 $\cdot G$: Projector onto the ground subspace

 $\cdot c,g$: Chromatic number and maximum degree

 $\cdot \epsilon$: gap(H)

Then

$$\frac{|\langle \Psi | \mathcal{O}(\mathbb{1} - G)\mathcal{O}' | \Psi \rangle|}{\|\mathcal{O}^{\dagger} | \Psi \rangle \| \|\mathcal{O}' | \Psi \rangle \|} \le 2 \exp\left(-\frac{2(\tilde{d}(\mathcal{O}, \mathcal{O}') - 2)}{2c - 1} \sqrt{\frac{\epsilon}{g^2 + \epsilon}}\right). \quad (3.3)$$

Detectability lemma

Definition 10. Operator norm

$$\|A\| \coloneqq \max_{|\psi\rangle \neq 0} \|A|\psi\rangle\|/\||\psi\rangle\|.$$

Lemma 1. Detectability lemma Anshu, Arad, Vidick, PRB 93, 205142 (2016).

We assume

- $H = \sum_{i=1}^{N} H_i$ is FF,
- \cdot Each H_i is an orthogonal projector.

Let $P_i:=\mathbb{1}-H_i$ and $P:=P_{\sigma(1)}\cdots P_{\sigma(N)}$ for arbitrary permutation $\sigma\in S_N.$ Then

$$||P - G|| \le \sqrt{\frac{g^2}{g^2 + \epsilon}} = 1 - O(\epsilon), \quad \epsilon = \text{gap}(H),$$
 (3.4)

where G is the projector to the ground subspace of H, and g is the maximum degree of the interaction graph for $\{H_i\}$.

21

Detectability lemma

■ Rough explanation of the detectability lemma

Consider approximating G (the projector onto the ground subspace) by a polynomial of local Hamiltonians $\{H_i\}$. We assume the following form:

$$P \coloneqq P_{\sigma(1)} \cdots P_{\sigma(N)} = (\mathbb{1} - H_{\sigma(1)}) \cdots (\mathbb{1} - H_{\sigma(N)}). \tag{3.5}$$

Here we consider e^{-H} instead of P.

$$\|\mathbf{e}^{-H} - G\| \le \mathbf{e}^{-\operatorname{gap}(H)} = \mathbf{e}^{-\epsilon} = 1 - O(\epsilon) \tag{3.6}$$

The Detectability lemma claims that a similar thing holds for *P*.

$$||P - G|| \le \sqrt{\frac{g^2}{g^2 + \epsilon}} = 1 - O(\epsilon). \tag{3.7}$$

Another lemma

Lemma 2.

We divide $\{H_i\}$ into c colors so that no two adjacent vertices have the same color. We denote i-th local Hamiltonian with color j as $H_i^{(j)}$. Let $P_i^{(j)} \coloneqq \mathbb{1} - H_i^{(j)}$, and consider

$$P := \prod_{i} P_{i}^{(c)} \prod_{i} P_{i}^{(c-1)} \cdots \prod_{i} P_{i}^{(2)} \prod_{i} P_{i}^{(1)}. \tag{3.8}$$

Then

$$\langle \Psi | \mathcal{O} \mathcal{O}' | \Psi \rangle = \langle \Psi | \mathcal{O} (P^{\dagger} P)^n \mathcal{O}' | \Psi \rangle \quad \text{for} \quad n \le m,$$
 (3.9)

where

$$m := \frac{\tilde{d}(\mathcal{O}, \mathcal{O}') - 2}{2c - 1}. \tag{3.10}$$

Another lemma

Proof: Since $|\Psi\rangle$ is the ground state, $\langle\Psi|\mathcal{O}P_i^{(1)}=\langle\Psi|\mathcal{O}(\mathbb{1}-H_i^{(1)})=\langle\Psi|\mathcal{O}$ if $[H_i^{(1)},\mathcal{O}]=0$. Repeating this argument,

$$\begin{split} \langle \Psi | \mathcal{O} P^\dagger P &= \langle \Psi | \mathcal{O} \prod_i P_i^{(1)} \prod_i P_i^{(2)} \cdots \prod_i P_i^{(c)} \prod_i P_i^{(c-1)} \cdots \prod_i P_i^{(2)} \prod_i P_i^{(1)} \\ &= \langle \Psi | \mathcal{O} \prod_{i: [H_i^{(1)}, \mathcal{O}] \neq 0} P_i^{(1)} \prod_{i: \tilde{d}(H_i^{(2)}, \mathcal{O}) \leq 2} P_i^{(2)} \prod_{i: \tilde{d}(H_i^{(3)}, \mathcal{O}) \leq 3} P_i^{(3)} \cdots \prod_{i: \tilde{d}(H_i^{(1)}, \mathcal{O}) \leq 2c-1} P_i^{(1)}. \end{split} \tag{3.11}$$

Thus, only $P_i^{(j)}$ in the "light cone" remain. Therefore,

$$\langle \Psi | \mathcal{O} \mathcal{O}' | \Psi \rangle = \langle \Psi | \mathcal{O} (P^{\dagger} P)^n \mathcal{O}' | \Psi \rangle$$

as long as two light cones from ${\cal O}$ and ${\cal O}'$ do not overlap (Fig. 6). Since $P^\dagger P$ has 2c-1 colors,

$$n \leq m \coloneqq (\tilde{d}(\mathcal{O}, \mathcal{O}') - 2)/(2c - 1).$$

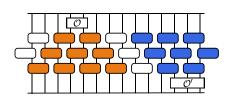


Figure 6: light cones for 1D chain

We assume that all local Hamiltonians are orthogonal projectors. Let

 $\cdot \ket{\Psi}$: GS of H

 $\cdot G$: Projector onto the ground subspace

 $\cdot c,g$: Chromatic number and maximum degree

 $\cdot \epsilon : gap(H)$

Then

$$\frac{|\langle \Psi | \mathcal{O}(\mathbb{1} - G)\mathcal{O}' | \Psi \rangle|}{\|\mathcal{O}^{\dagger}|\Psi\rangle\|\|\mathcal{O}'|\Psi\rangle\|} \le 2 \exp\left(-\frac{2(\tilde{d}(\mathcal{O}, \mathcal{O}') - 2)}{2c - 1} \sqrt{\frac{\epsilon}{g^2 + \epsilon}}\right). \quad (3.12)$$

Let us show the Gosset–Huang inequality. From the lemma 2,

$$\langle \Psi | \mathcal{O}\mathcal{O}' | \Psi \rangle = \langle \Psi | \mathcal{O}Q_m(P^{\dagger}P)\mathcal{O}' | \Psi \rangle.$$
 (3.13)

for polynomials $Q_m(x)$ such that $\deg Q_m(x) \leq m$ and $Q_m(1)=1$. Let $G^\perp:=\mathbb{1}-G$. Since $P^\dagger PG=G$,

$$(P^\dagger P)^n - G = (P^\dagger P)^n G^\perp = (P^\dagger P - G)^n G^\perp \tag{3.14}$$

Therefore,

$$\begin{split} \langle \Psi | \mathcal{O}(\mathbb{1} - G) \mathcal{O}' | \Psi \rangle &= \langle \Psi | \mathcal{O}(Q_m(P^\dagger P) - G) \mathcal{O}' | \rangle \\ &= \langle \Psi | \mathcal{O}Q_m(P^\dagger P - G) G^\perp \mathcal{O}' | \Psi \rangle \\ &\leq \| \mathcal{O}^\dagger | \Psi \rangle \| \| \mathcal{O}' | \Psi \rangle \| \| Q_m(P^\dagger P - G) \|. \end{split} \tag{3.15}$$

We can obtain an upper bound for correlation functions from the upper bound for $\|Q_m(P^\dagger P-G)\|.$

From the detectability lemma, $\|P^\dagger P - G\| = \|P - G\|^2 \le g^2/(g^2 + \epsilon) =: 1 - \delta$. Therefore

$$\|Q_m(P^\dagger P - G)\| \leq \max_{0 \leq x \leq 1 - \delta} |Q_m(x)| \quad \text{where} \quad \delta \coloneqq \frac{\epsilon}{g^2 + \epsilon}. \tag{3.16}$$

We minimize the right-hand side of Eq. (3.16) under the constraint $\deg Q_m \leq m$ and $Q_m(1)=1$. The optimal polynomial is

$$Q_m(x) = \frac{T_m(\frac{2x}{1-\delta} - 1)}{T_m(\frac{2}{1-\delta} - 1)},$$
 (3.17)

where $T_m(x)$ is the degree m Chebyshev polynomial of the first kind defined by $T_m(x) = \cos(m \arccos x)$ or $\cosh(m \arccos x)$.

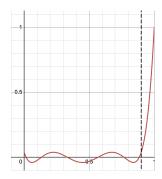


Figure 7: The optimal polynomial $Q_m(x)$ for m=6 and $\delta=0.1$

The Chebyshev polynomial $T_m(x)$ satisfies

$$\begin{cases} T_m(x) \ge \frac{1}{2} e^{2m\sqrt{(x-1)/(x+1)}} & x \ge 1, \\ |T_m(x)| \le 1 & |x| \le 1. \end{cases}$$
 (3.18)

Therefore, we obtain

$$\begin{split} \frac{\langle \Psi | \mathcal{O}(\mathbb{1} - G) \mathcal{O}' | \Psi \rangle}{\| \mathcal{O}^{\dagger} | \Psi \rangle \| \| \mathcal{O}' | \Psi \rangle \|} &\leq \max_{0 \leq x \leq 1 - \delta} |Q_m(x)| = \max_{0 \leq x \leq 1 - \delta} \frac{|T_m(\frac{2x}{1 - \delta} - 1)|}{T_m(\frac{2}{1 - \delta} - 1)} \\ &\leq 1 \cdot \left(\frac{1}{2} \mathrm{e}^{2m\sqrt{\delta}}\right)^{-1} \\ &= 2 \exp\left(-\frac{2(\tilde{d}(\mathcal{O}, \mathcal{O}') - 2)}{2c - 1} \sqrt{\frac{\epsilon}{g^2 + \epsilon}}\right). \quad \Box \end{split} \tag{3.19}$$

- 1. Introduction
- 2. Our results
- 3. Gosset-Huang inequality
- 4. Rokhsar–Kivelson Hamiltonians and Markov processes
- 5. Critical FF systems from critical points
- 6. Other critical FF systems
- 7. Summary and open questions

4. Rokhsar-Kivelson Hamiltonians and Markov processes

We focus on a specific class of FF Hamiltonians.

Definition 11. RK Hamiltonians

Let

- $S = \{C\}$: set of classical configurations (e.g. Ising spins).
- $w(\mathcal{C}) \geq 0$: Boltzmann weight for $\mathcal{C} \in \mathcal{S}$.

 $H^{ ext{RK}} = \sum_i H_i^{ ext{RK}}$ is a Rokhsar–Kivelson (RK) Hamiltonian if

- 1. Hamiltonian is FF
- 2. GS can be written as

$$|\Psi_{\rm RK}\rangle = \sum_{\mathcal{C}\in\mathcal{S}} \sqrt{\frac{w(\mathcal{C})}{\mathcal{Z}}} |\mathcal{C}\rangle, \quad \mathcal{Z} = \sum_{\mathcal{C}\in\mathcal{S}} w(\mathcal{C}).$$
 (4.1)

3. The off-diagonal elements of H_i are non-positive

Note that the properties 2 and 3 are basis dependent.

Correspondence between RK Hamiltonians and Markov processes

RK Hamiltonians correspond to Markov processes with local state updates and the detailed balance condition.

Henley, J. Phys.: Condens. Matter 16 S891 (2004). Castelnovo *et al.*, Ann. Phys. 318, 316 (2005).

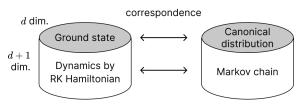


Figure 8: Correspondence between RK Hamiltonians and Markov processes.

Correspondence between RK Hamiltonians and Markov processes

RK Hamiltonians	Markov processes
Hilbert space	Configuration space
$\mathcal{H} = \operatorname{Span}\{ \mathcal{C}\rangle\}$	$S = \{C\}$
Ground state	Steady state
$\sum_{\mathcal{C} \in \mathcal{S}} \sqrt{w(\mathcal{C})/\mathcal{Z}} \ket{\mathcal{C}}$	$w(\mathcal{C})/\mathcal{Z}$
Hamiltonian	Transition-rate matrix
$H^{ m RK}$	W
Symmetricity	Detailed balance condition
$(H_i^{\rm RK})_{\mathcal{CC}'} = (H_i^{\rm RK})_{\mathcal{CC}'}$	$(W_i)_{\mathcal{CC}'}w(\mathcal{C}') = (W_i)_{\mathcal{C}'\mathcal{C}}w(\mathcal{C})$
FF-ness	Probability conservation
$\langle \Psi_{\rm RK} H_i^{\rm RK} = 0$	$\sum_{\mathcal{C}} (W_i)_{\mathcal{C}\mathcal{C}'} = 0$
Dynamic critical exponent	Dynamic critical exponent
${\rm gap}(H^{\rm RK}) \sim L^{-z}$	$ au \sim L^z$

Table 2: Correspondense between RK Hamiltonians and Markov processes

Correspondence between RK Hamiltonians and Markov processes

We define the transition-rate matrix \boldsymbol{W} from the Hamiltonian by

$$W_i = -SH_i^{\text{RK}}S^{-1}, \quad W = \sum_i W_i,$$
 (4.2)

where

$$S_{\mathcal{CC'}} = \langle \mathcal{C}|S|\mathcal{C'}\rangle = \sqrt{\frac{w(\mathcal{C})}{\mathcal{Z}}}\,\delta_{\mathcal{CC'}}.$$
 (4.3)

Then the imaginary-time Schrödinger equation corresponds to the master equation.

$$\frac{\mathrm{d}}{\mathrm{d}t}|\psi\rangle = -H^{\mathrm{RK}}|\psi\rangle \Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t}p(\mathcal{C}) = \sum_{\mathcal{C}' \in \mathcal{S}} W_{\mathcal{C}\mathcal{C}'}p(\mathcal{C}'), \quad p(\mathcal{C}) \coloneqq \langle \mathcal{C}|S|\psi\rangle. \tag{4.4}$$

The GS $|\Psi_{\rm RK}\rangle$ corresponds to the steady state $w(\mathcal{C})/\mathcal{Z}$:

$$H^{\rm RK}|\Psi_{\rm RK}\rangle = 0 \Leftrightarrow \sum_{\mathcal{C}'} W_{\mathcal{CC}'} \frac{w(\mathcal{C}')}{\mathcal{Z}} = 0.$$
 (4.5)

Correspondence between RK Hamiltonians and Markov processes

The local Hamiltonian $H_i^{\rm RK}$ is symmetric (Hermitian + real matrix elements). This implies W_i satisfies detailed balance condition:

$$\begin{split} (W_i)_{\mathcal{CC}'}w(\mathcal{C}') &= -\sqrt{w(\mathcal{C})} \, (W_i)_{\mathcal{CC}'} \frac{1}{\sqrt{w(\mathcal{C}')}} w(\mathcal{C}') \\ &= -\sqrt{w(\mathcal{C})w(\mathcal{C}')} \, (H_i^{\mathrm{RK}})_{\mathcal{CC}'} \\ &= -\sqrt{w(\mathcal{C}')w(\mathcal{C})} \, (H_i^{\mathrm{RK}})_{\mathcal{C}'\mathcal{C}} \\ &= (W_i)_{\mathcal{C}'\mathcal{C}}w(\mathcal{C}). \end{split} \tag{4.6}$$

Also from $\langle \Psi_{
m RK} | H_i^{
m RK} = 0$ (FF-ness), we obtain the probability conservation

$$\sum_{\mathcal{C}} (W_i)_{\mathcal{CC}'} = 0, \quad \frac{\mathrm{d}}{\mathrm{d}t} \sum_{\mathcal{C} \in \mathcal{S}} p(\mathcal{C}) = \sum_{\mathcal{C}, \mathcal{C}' \in \mathcal{S}} W_{\mathcal{CC}'} p(\mathcal{C}') = 0. \tag{4.7}$$

Correspondence between RK Hamiltonians and Markov processes

Let us consider the autocorrelation functions

$$A_{\mathcal{O}}(t) := \frac{\langle \Psi_{\text{RK}} | \mathcal{O}(e^{-H^{\text{RK}}t} - G)\mathcal{O} | \Psi_{\text{RK}} \rangle}{\langle \Psi_{\text{RK}} | \mathcal{O}(\mathbb{1} - G)\mathcal{O} | \Psi_{\text{RK}} \rangle}$$
(4.8)

where $G=|\Psi_{\rm RG}\rangle\langle\Psi_{\rm RG}|$ is the projector onto ground subspace. (For simplicity, we assume the GS is unique.) The autocorrelation functions satisfy

$$A_{\mathcal{O}}(0) = 1, \quad \lim_{t \to \infty} A_{\mathcal{O}}(t) = 0. \tag{4.9}$$

The decay of the autocorrelation function is characterized by the relaxation time defined as

$$\tau \coloneqq \frac{1}{\operatorname{gap}(H^{\operatorname{RK}})}.\tag{4.10}$$

If $H^{\rm RK}$ is gapless, τ diverges as $L \to \infty$. Then, the dynamic critical exponent z is defined as $\tau \sim L^z$.

Correspondence between RK Hamiltonians and Markov processes

RK Hamiltonians	Markov processes
Hilbert space	Configuration space
$\mathcal{H} = \operatorname{Span}\{ \mathcal{C}\rangle\}$	$S = \{C\}$
Ground state	Steady state
$\sum_{\mathcal{C} \in \mathcal{S}} \sqrt{w(\mathcal{C})/\mathcal{Z}} \ket{\mathcal{C}}$	$w(\mathcal{C})/\mathcal{Z}$
Hamiltonian	Transition-rate matrix
$H^{ m RK}$	W
Symmetricity	Detailed balance condition
$(H_i^{\rm RK})_{\mathcal{CC}'} = (H_i^{\rm RK})_{\mathcal{CC}'}$	$(W_i)_{\mathcal{CC}'}w(\mathcal{C}') = (W_i)_{\mathcal{C}'\mathcal{C}}w(\mathcal{C})$
FF-ness	Probability conservation
$\langle \Psi_{\rm RK} H_i^{\rm RK} = 0$	$\sum_{\mathcal{C}} (W_i)_{\mathcal{C}\mathcal{C}'} = 0$
Dynamic critical exponent	Dynamic critical exponent
${\rm gap}(H^{\rm RK}) \sim L^{-z}$	$ au \sim L^z$

Table 3: Correspondense between RK Hamiltonians and Markov processes

- 1. Introduction
- 2. Our results
- 3. Gosset-Huang inequality
- 4. Rokhsar–Kivelson Hamiltonians and Markov processes
- 5. Critical FF systems from critical points
- 6. Other critical FF systems
- 7. Summary and open question:

Markov chain Monte Carlo methods

First, we roughly introduce a numerical way to compute \emph{z} . We discretize the Markov process by

$$e^{Wt} \approx (1 + W\delta t)^{t/\delta t},\tag{5.1}$$

$$e^{-Ht} \approx (\mathbb{1} - H\delta t)^{t/\delta t} = \exp\left(-\frac{\ln(\mathbb{1} - H\delta t)}{-\delta t}t\right).$$
 (5.2)

The continuous and discrete dynamics share the same dynamic critical exponent. The discretized Markov process can be simulated by Markov chain Monte Carlo (MCMC) methods.

$$\mathcal{C}(0) \stackrel{\mathbb{1}+W\delta t}{\longrightarrow} \mathcal{C}(\delta t) \stackrel{\mathbb{1}+W\delta t}{\longrightarrow} \mathcal{C}(2\delta t) \stackrel{\mathbb{1}+W\delta t}{\longrightarrow} \cdots \stackrel{\mathbb{1}+W\delta t}{\longrightarrow} C(t). \tag{5.3}$$

We can compute the dynamic critical exponents z numerically by measuring relaxations of autocorrelation functions (in a much shorter time than for exact diagonalization).

Example: 2+1D kinetic Ising model

■ Gibbs sampling for 2D critical Ising model

Let Λ be the square lattice and let $\mathcal{C}=\{\sigma_i\}_{i\in\Lambda}$. Each spin σ_i takes the values of ± 1 . The Boltzmann weight of the Ising model is given by

$$w(\mathcal{C}) = e^{-\beta E(\mathcal{C})}, \quad E(\mathcal{C}) = -\sum_{\substack{i,j \in \Lambda \\ i \sim j}} \sigma_i \sigma_j.$$
 (5.4)

Let C_i be the configuration obtained by flipping the spin at $i \in \Lambda$ in C. The local transition rate matrix of the Gibbs sampling is given by

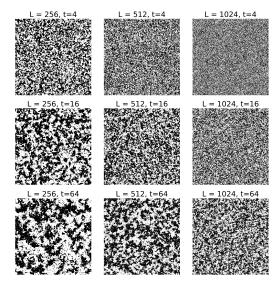
$$(W_i)_{\mathcal{C}_i\mathcal{C}} = -(W_i)_{\mathcal{C}\mathcal{C}} = \frac{w(\mathcal{C}_i)}{w(\mathcal{C}) + w(\mathcal{C}_i)}.$$
 (5.5)

Corresponding RK Hamiltonian is

$$H_i^{\text{RK}} = \frac{1}{2\cosh(\beta \sum_{j \sim i} Z_j)} \left(e^{-\beta Z_i \sum_{j \sim i} Z_j} - X_i \right). \tag{5.6}$$

Example: 2+1D kinetic Ising model

At $\beta=\beta_c=\frac{1}{2}\ln(1+\sqrt{2})$, the relaxation time diverges as $L\to\infty$. ($z\approx2.17$)



Dynamic critical exponents for various critical points

Critical points	z (numerical)	References
Ising (2D)	$2.1667(5) \ge 2$	Nightingale, Blöte, PRB 62, 1089 (2000).
Ising (3D)	$2.0245(15) \ge 2$	Hasenbusch, PRE 101, 022126 (2020).
Heisenberg (3D)	$2.033(5) \ge 2$	Astillero, Ruiz-Lorenzo, PRE 100, 062117 (2019).
three-state Potts (2D)	$2.193(5) \ge 2$	Murase, Ito, JPSJ 77, 014002 (2008).
four-state Potts (2D)	$2.296(5) \ge 2$	Phys. A: Stat. Mech. Appl. 388, 4379 (2009).

Table 4: Dynamic critical exponents of RK Hamiltonians corresponding to critical statistical systems.

RK Hamiltonians constructed from the Boltzmann weight of a critical point seemed to have dynamic critical exponent $z \ge 2$.

← Conjectured by Isakov et al. PRB 83, 125114 (2011).

Critical FF systems

Let us show $z \geq 2$ for RK Hamiltonians constructed from critical statistical systems.

We recap the definition of criticality for FF systems and its implications. An FF Hamiltonian is critical if there is a correlation function such that

$$|x-y|\sim L, \quad \frac{|\langle\Psi|\mathcal{O}_x(\mathbb{1}-G)\mathcal{O}_y'|\Psi\rangle|}{\|\mathcal{O}_x^{\dagger}|\Psi\rangle\|\|\mathcal{O}_y'|\Psi\rangle\|} \gtrsim L^{-\Delta}, \quad \Delta>0. \tag{5.7}$$

Critical FF Hamiltonians satisfy $z \geq 2$.

Theorem 3. Masaoka, Soejima, Watanabe arXiv:2406.06415.

The RK Hamiltonian with a unique GS constructed from the Boltzmann weight of a critical point is a critical FF system and its dynamic critical exponent satisfies $z \geq 2$.

Critical FF systems

Let us show the criticality of this model. For diagonal operators $O \coloneqq \sum_{\mathcal{C} \in \mathcal{S}} O(\mathcal{C}) |\mathcal{C}\rangle \langle \mathcal{C}|$, quantum expectations corresponds to classical expectations:

$$\langle \Psi_{\rm RK} | O | \Psi_{\rm RK} \rangle = \sum_{\mathcal{C} \in \mathcal{S}} \frac{O(\mathcal{C}) w(\mathcal{C})}{\mathcal{Z}} =: \langle O \rangle.$$
 (5.8)

Since the Boltzmann weight $w(\mathcal{C})$ is at a critical point, there is a local operator O_i such that

$$\langle O_i \rangle = 0, \quad \langle O_i^2 \rangle = \text{const.}, \quad \langle O_i O_i \rangle \sim \frac{1}{|x_i - x_j|^{2\Delta_O}},$$
 (5.9)

where Δ_O is the scaling dimension of O_i . Thus, if $|x_i-x_j|\sim L$,

$$\begin{split} \frac{|\langle \Psi_{\rm RK}|\mathcal{O}_i(\mathbb{1}-G)\mathcal{O}_j|\Psi_{\rm RK}\rangle|}{\|\mathcal{O}_i|\Psi_{\rm RK}\rangle\|\|\mathcal{O}_j|\Psi_{\rm RK}\rangle\|} \sim |\langle \Psi_{\rm RK}|\mathcal{O}_i(\mathbb{1}-|\Psi_{\rm RK}\rangle\langle\Psi_{\rm RK}|)\mathcal{O}_j|\Psi_{\rm RK}\rangle| \\ &= |\langle \mathcal{O}_i\mathcal{O}_j\rangle - \langle \mathcal{O}_i\rangle\langle\mathcal{O}_j\rangle| \sim L^{-2\Delta_{\mathcal{O}}}. \end{split} \tag{5.10}$$

Here, we used $G=|\Psi_{\rm RK}\rangle\langle\Psi_{\rm RK}|$ since the GS is unique. Therefore, this model is critical, and $z\geq 2$ from our theorem.

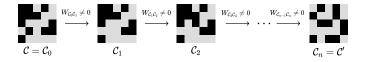
Critical FF systems

We used the uniqueness of the GS. This assumption is justified by ergodicity.

Definition 12. Ergodicity

A Markov process with transition-rate W is called ergodic if, $\forall (\mathcal{C},\mathcal{C}')$, there exist $n \in \mathbb{N}$ and a chain of configurations $\mathcal{C}_0,\mathcal{C}_1,\ldots,\mathcal{C}_n$ such that

$$\mathcal{C}_0 = \mathcal{C}, \quad \mathcal{C}_n = \mathcal{C}', \quad W_{\mathcal{C}_0 \mathcal{C}_1} W_{\mathcal{C}_1 \mathcal{C}_2} \cdots W_{\mathcal{C}_{n-1} \mathcal{C}_n} \neq 0. \tag{5.11}$$



An ergodic Markov process has a unique steady state. The proof is based on the Perron–Frobenius theorem.

Non-ergodic Markov processes have completely separated configuration subspaces. In this case, we focus on one of them to recover ergodicity.

No-go theorem for local MCMC methods with detailed balance

For RK Hamiltonians constructed by critical points, we can show criticality by the same argument. Thus, the following no-go theorem follows.

No-go theorem. Masaoka, Soejima, Watanabe arxiv:2406.06415.

Ergodic Markov processes with local state updates and the detailed balance condition undergo critical slowing down at a critical point, with a dynamic critical exponent $z \ge 2$.

→ First proof of an empirical fact known in the MCMC contexts.

No-go theorem for local MCMC methods with detailed balance

Remark.

We can consider FF Hamiltonians with more general ground states that have a phase factor:

$$|\Psi\rangle = \sum_{\mathcal{C} \in \mathcal{S}} \mathrm{e}^{\mathrm{i}\theta(\mathcal{C})} \sqrt{\frac{w(\mathcal{C})}{\mathcal{Z}}} |\mathcal{C}\rangle, \quad \theta(\mathcal{C}) \in \mathbb{R}.$$
 (5.12)

■ Fine-tuned Fibonacci Levin Wen model

Fendley, Fradkin, PRB 72, 024412 (2005).

Fendley, Ann. Phys. 323(12), 3113-3136 (2008).

- The Boltzmann weight $w(\mathcal{C})$ represents c=14/15 CFT.
- · Ground state shows algebraic correlations.
- It cannot be mapped to MCMC due to the sign problem.

We can show $z \geq 2$ in the same way since phases $\pm \theta(\mathcal{C})$ cancel in correlation functions of diagonal operators.

Stochastic dynamics with z < 2

By violating the assumptions in the no-go theorem, one can create Markov processes with faster relaxation with z<2.

■ Wolff cluster algorithm wolff, PRL. 62, 361 (1988).

Locality: ×, Detailed balance condition: √

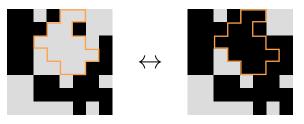


Figure 9: State update of the Wolff cluster algorithm

The dynamic critical exponent is $z\approx 0.3$ for the 2D Ising critical point. Liu et al. PRB 89, 054307 (2014).

Stochastic dynamics with z < 2

■ Asymmetric simple exclusion process (ASEP)

Locality: √, Detailed balance condition: ×

Let us consider the following XXZ model with a non-Hermitian term.

$$H_i = \frac{1}{4}(1 - \Delta Z_i Z_{i+1}) - \frac{1+s}{2}\sigma_i^+\sigma_{i+1}^- - \frac{1-s}{2}\sigma_i^-\sigma_{i+1}^+ + \frac{s}{2}(Z_i - Z_{i+1}) \quad \text{(5.13)}$$

 $\Delta < 1$: Gapless phase (z = 1)

 $\Delta > 1$: Gapped phase

 $\Delta=1$: Stochastic line

- s = 0: Heisenberg model (z = 2)
- s > 0: ASEP (z = 3/2)Kim, PRE 52, 3512 (1995).

Gwa, Spohn, PRA 46, 844 (1992).

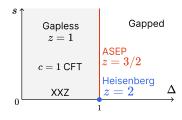


Figure 10: Phase diagram of XXZ model with a non-Hermitian term.

- 1. Introduction
- 2. Our results
- 3. Gosset-Huang inequality
- 4. Rokhsar-Kivelson Hamiltonians and Markov processes
- 5. Critical FF systems from critical points
- 6. Other critical FF systems
- 7. Summary and open questions

Other critical FF systems (XXZ model with a fine-tunde magnetic field)

Let us look at examples of critical FF models that are not constructed from critical statistical systems.

■ XXZ model with fine-tuned magnetic field

Let us consider the following XXZ model

$$\begin{split} H_i &= -X_i X_{i+1} - Y_i Y_{i+1} - \Delta Z_i Z_{i+1} \\ &- h(Z_i + Z_{i+1}) + (1+h) \mathbb{1}. \end{split} \tag{6.1}$$

We assume the model is on the critical line

$$h + \Delta = 1, \quad \Delta < 1. \tag{6.2}$$

Then, the kernel of H_i is given by

$$\ker H_i = \operatorname{Span}\{|00\rangle, |01\rangle + |10\rangle\}. \tag{6.3}$$

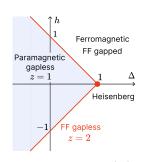


Figure 11: The model (6.1) correpond to upper critical line.

Other critical FF systems (XXZ model with a fine-tunde magnetic field)

Let us show the criticality of this model.

$$H_i = -X_i X_{i+1} - Y_i Y_{i+1} - \Delta Z_i Z_{i+1} - (1-\Delta)(Z_i + Z_{i+1}) + (2-\Delta)\mathbb{1}, \quad (6.4)$$

$$\ker H_i = \operatorname{Span}\{|00\rangle, |01\rangle + |10\rangle\}. \tag{6.5}$$

There are the following two ground states.

$$|\Psi_0\rangle = |0\cdots 0\rangle, \; |\Psi_1\rangle = \frac{1}{\sqrt{L}} \sum_{i=1}^L \sigma_i^- |\Psi_0\rangle$$

The second plane-wave ground state is important. We consider the following correlation function.

$$|\langle \Psi_0 | \sigma_i^+ (\mathbb{1} - G) \sigma_j^- | \Psi_0 \rangle| = |\langle \Psi_0 | \sigma_i^+ | \Psi_1 \rangle \langle \Psi_1 | \sigma_j^- | \Psi_0 \rangle| = \frac{1}{L}. \tag{6.6}$$

Therefore, this model is critical and $z\geq 2$. Note that our definition of criticality does not require $\langle \Psi_0|a_i(\mathbb{1}-G)a_j^\dagger|\Psi_0\rangle\sim 1/|i-j|^\Delta.$

Other critical FF systems (1+1D kinetic Ising model)

■ 1+1D zero-temperature kinetic Ising model

The 1+1D kinetic Ising model is the RK Hamiltonian for the 1D Ising model. The Hamiltonian in the zero-temperature limit is given by

$$\ker H_i = \operatorname{Span}\{|000\rangle, |111\rangle, |0+1\rangle, |1+0\rangle\}, \tag{6.7}$$

$$H_i = \frac{1}{2} \mathbb{1} - \frac{1}{4} (Z_{i-1} Z_i + Z_i Z_{i+1} + X_i - Z_{i-1} X_i Z_{i+1}) \ge 0.$$
 (6.8)

The ground states for PBC are

$$|\Psi_0\rangle = |0\cdots 0\rangle, \quad |\Psi_1\rangle = |1\cdots 1\rangle.$$
 (6.9)

These states do not have any correlation at first glance. However, this model has the dynamic critical exponent z=2.

Other critical FF systems (1+1D kinetic Ising model)

How to detect criticality? We define the following "local" excitations.

$$|O_i^+\rangle \coloneqq |\stackrel{i}{\widehat{0\cdots0}}\,10\cdots0\rangle + |\stackrel{i}{\widehat{0\cdots0}}\,110\cdots0\rangle + \cdots + |\stackrel{i}{\widehat{1\cdots10}}\,1\cdots1\rangle, \tag{6.10}$$

$$|O_i^-\rangle \coloneqq |\overbrace{1\cdots 1}^i \ 0 \ 1 \cdots 1\rangle + |\overbrace{1\cdots 1}^i \ 0 \ 0 \ 1 \cdots 1\rangle + \cdots + |\overbrace{0\cdots 0 1}^i \ 0 \cdots 0\rangle. \tag{6.11}$$

These states can be treated as local excitations since

$$H_j|O_i^+\rangle=H_j|O_i^-\rangle=0 \quad (j\neq i,i+1). \tag{6.12} \label{eq:6.12}$$

Our argument works for such extended cases as well. The correlation function for O_i^+ and O_i^- is

$$\frac{|\langle O_i^+ | (\mathbb{1} - G) | O_j^- \rangle|}{\||O_i^+ \rangle\| \||O_j^- \rangle\|} = \dots = \frac{1}{L - 1}. \tag{6.13}$$

Thus, this model is critical and $z \ge 2$.

- 1. Introduction
- 2. Our results
- 3. Gosset-Huang inequality
- 4. Rokhsar-Kivelson Hamiltonians and Markov processes
- 5. Critical FF systems from critical points
- 6. Other critical FF systems
- 7. Summary and open questions

Summary

Our study highlights the unique nature of the gapless FF system through the dynamic critical exponent. We have established the lower bound $z\geq 2$ for critical FF systems. This class contains

- · RK Hamiltonians constructed from critical points
- · FF systems with a plane-wave ground state.
- FF systems with long-range correlations of "local" excitations.

Also, we established the following no-go theorem for Markov processes.

• Local Markov processes with the detailed balance condition undergo critical slowing down at a critical point with $z \ge 2$.

Surprisingly, new insights can be gained in the traditional field of dynamic critical phenomena by employing knowledge from quantum theory.

Open questions

Is there a general proof of $z \geq 2$ for gapless FF systems?

We assumed the existence of a critical correlation function.

Is there a field-theoretic proof or understanding of why $z \geq 2$?

Naive definition of FF field theory:

$$\forall x, \ \mathcal{H}(x)|\Psi\rangle = 0, \tag{7.1}$$

where $\mathcal{H}(x)$ is the positive semidefinite Hamiltonian density, $|\Psi\rangle$ is a ground state and x is the spatial coordinate.

THANK YOU.